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1. Introduction

Optimization is a process of finding one or more solutions to a
problem for satisfying certain limitations (also constraints), and
minimizes or maximizes one or more objectives (Deb, 2001). Those
problems that arise daily in practice are typically complex accord-
ing to the time and space needed for solving them on digital com-
puters. Therefore, exact solving of problems ordinarily fail, where
all possible solutions need to be checked. As a result, a lot of algo-
rithms have now arisen that solve the problems heuristically. Usu-
ally, a search process involved within such heuristic algorithms
when seeking good solutions is influenced by both randomization
global and deterministic local searches. These kinds of heuristics
are therefore also referred as meta-heuristics. Typically, these algo-
rithms are inspired by Nature. Essentially, there are three sources
that influence the development of algorithms for problem-solving
on digital computers:

� the human brain (Russel & Norvik, 2010),
� the Darwinian evolution (Darwin, 1859), and
� the social behavior of insects and other animals (Kennedy &

Eberhart, 2001).

The first source has been led to emergence of artificial intelli-
gence (AI), the second to evolutionary computation (EC), and the
third to swarm intelligence (SI). This paper focuses on swarm intel-
ligence, more precisely on the firefly algorithm (FA) as being one of
the more famous representatives of this class of algorithm.
Fireflies are insects, the main characteristic of which is their
flashing lights that can be admired in the summer sky at night.
These lights have two fundamental functions, i.e., to attract mating
partners and to warn off potential predators. The flashing lights’
intensity I decreases as the distance r increases according to the
term I / I=r2. This phenomenon inspired Yang (2008) to formulate
the firefly algorithm.

Results from experiments running FA have shown that, on the
one hand, the FA is appropriate for solving multi modal problems
while, on the other hand, it can either be mostly stuck into the local
minimum (premature convergence) or the results do not improved
furthermore (stagnation). It seems that both phenomenons could
be connected with the exploration and exploitation components
of a process space. Črepinšek, Mernik, and Liu (2011) asserted that
too much exploitation induces premature convergence, while too
much exploration slows down the convergence. Several ap-
proaches could be used in order to avoid premature convergence
or stagnation. For instance, Fister, Yang, Brest, and Fister (2013)
proposed explicit balancing the process of exploration and exploi-
tation regarding the diversity metric.

This paper focuses on the same problem, i.e., how to avoid pre-
mature convergence and/or stagnation within the FA algorithm by
using the quaternion’s representation of individuals. In mathemat-
ics, quaternions extend complex numbers. Quaternion algebra is
connected with special features of geometry of the appropriate
Euclidian spaces. Quaternions are especially appropriate within
those areas where it is necessary to compose rotations with mini-
mal computation, e.g., programming video games or controllers of
spacecraft (Conway & Smith, 2003). For instance, 3-dimensional
rotation can be specified by a single quaternion, while a pair of
quaternions are needed for 4-dimensional rotation. Quaternion
calculus is introduced within several physical applications, like
crystallography, the kinematics of rigid body motion, the Thomas
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precession, the special theory of relativity, and classical electro-
magnetism (Girard, 1984). A step forward in the popularization
of quaternions was achieved by Lambek (1995), who stated that
quaternions could provide a shortcut for those pure mathemati-
cians who wished to familiarize themselves with certain aspects
of theoretical physics.

The aim of selecting the proper problem representation is two-
fold. First, to encode all possible solutions and second, to apply
operators that fit well to the properties of the representation
(Rothlauf, 2006). Each optimization problem can be represented
in many ways. Moreover, some representations are problem-spe-
cific. Representation affects the performances of SI algorithms
essentially, although yet no theoretical evidence exists for this
behavior. Therefore, designers are obliged to trust their intuition
in selecting the appropriate representation.

When using a quaternions’ representation, it is expected that a
balance between the exploration and exploitation can be per-
formed. A quaternion’s search space is explored in place of explor-
ing the original search space. That is, each 1-dimensional real-
values element of the solution vector is mapped into a 4-dimen-
sional quaternion. Although the quaternion search space is huge
when compared to the original search space, exploring this space
is easier because the fitness landscape, as determined by fitness
function is less complex within this space. As a result, the search
process is implicitly directed towards the more promising areas
of the search space.

Our experimental work started with the original FA algorithm
by optimizing a suite of well-known functions taken from litera-
ture (Yang, 2010). The purpose of the experiments was to show
what impact the quaternion’s representation of individuals into
FA (also QFA) had on the results of optimization. The experiments
showed that the results of the FA algorithm could be improved
when the same algorithm was hybridized using the representation
of individuals with quaternions (QFA). Moreover, when comparing
the results of the QFA algorithm with the results of other algo-
rithms like PSO, DE, and ABC it showed that these were also com-
parable with the other algorithms in the experiments.

1.1. Related work

The swarm intelligence principle is based on several unsophis-
ticated entities that cooperate in order to exhibit the desired
behavior, in place of a sophisticated controller that governs the
global behavior of the system (Blum & Li, 2008). For instance, an
ant as an individual does not imply much, but an ant colony is
capable of performing significant tasks when cooperating (as
building the anthills). However, no global master-plan exists for
an individual. Moreover, ants do not even use direct communica-
tion between each other. In place of direct communication, they
apply indirect communication via chemical pheromone trails that
direct the individual ants to easily finding the shortest path. This
behavior inspired Dorigo and Di Caro (1999) to develop ant colony
optimization (ACO).

On the other hand, the social behavior of animals and insects,
e.g., bird flocking, fish schooling, and animal herding, inspired Ken-
nedy and Eberhart (1999) to develop the particle swarm optimiza-
tion algorithm (PSO). Similarly to natural swarm of individuals
(like birds) that move thorough the landscape seeking the regions
rich with food, artificial particles representing a solution to the
problem also moves through a search-space looking for optimal
solutions.

Honey bees’ behavior demonstrates all the characteristics
needed for efficient meta-heuristic, i.e., moving bees in groups,
exploration and exploitation, attraction of more promising regions
of the landscape. Bees move in groups in order to transport nectar
from a food source to a hive. This movement is self-organized and
based on the interactions between bees, rather than from a hierar-
chical center (Beekman, Sword, & Simpson, 2008). Exploitation
means the usage of existing information. That is, bees exploit areas
rich with nectar. In contrast, exploration means the collection of
new information. This information is realized by bees through
scout bees that seek for new promising areas of the landscape.
The mobilization of onlooker bees waiting for decision-making in
order to exploit more attractive areas of a landscape is made
through the so-named ‘‘waggle dance’’, where the scout informs
the onlooker bees where a new food source rich with nectar can
be found. The bees’ behavior inspired Karaboga and Basturk
(2007) to develop an artificial bee colony algorithm (ABC).

The bat algorithm (BA) that exploits the so called echolocation
of bats was developed by Yang (2010). Bats use echo-locating as
a sonar in order to detect and avoid obstacles. Bats have additional
night vision because rays can be transmitted and received also in
complete dark. It is generally known that sound pulses are trans-
formed to frequency reflected from obstacles. Bats measure the
time from emission to reflection and use it for their navigation.
They emit very loud, ultrasonic sound pulses. The pulse rate is usu-
ally defined as 10 to 20 times per second. After hitting and reflect-
ing, bats transform their own pulses to be informed about how far
away the prey is.

Some cuckoo species behave as obligate brood parasites by lay-
ing their eggs in the nests of other host birds. This means that the
host birds then nurture foreign offspring. This behavior inspired
Yang and Deb (2009) to formulate a cuckoo search algorithm.

Swarm intelligence is concerned mainly with the design of
intelligent multi-agent systems (Wooldridge, 2009). Algorithms
from this field have been applicable primarily for optimization
problems, and the control of robots. The more notable works relat-
ing to this paper with regard to swarm intelligence algorithms are
as follows: ant colony optimization (Dorigo & Di Caro, 1999; Kor-
ošec, Šilc, & Filipič, 2012), particle swarm optimization (Kennedy
& Eberhart, 1999), artificial bees colony optimization (Fister, Fister,
Brest, & Žumer, 2012; Karaboga & Basturk, 2007), firefly algorithm
(Fister, Yang, Fister, & Brest, 2012), cuckoo search (Yang & Deb,
2009), bat algorithm (Fister, Fister, & Yang, 2013), etc.
1.2. Structure of this paper

The structure of the reminder of this paper is as follows. Sec-
tion 2 deals with optimization problems and their complexities.
Quaternions’ algebra is represented in Section 3. In Section 4, a de-
tailed description follows of the FA using quaternion’s representa-
tion of individuals. The experiments and result are discussed in
Section 5. The paper concludes with a summary of our work and
an outline of the directions of further work.
2. Complexity of optimization problems

An optimization problem can be formally defined as a quadrille
hI; S; fo; gi, where

� I: is a set of instances x 2 I,
� S: is the function that to each instance x 2 I assigns a set of fea-

sible solutions SðxÞ,
� fo: is the objective function that to each feasible solution s 2 SðxÞ

of instance x 2 I assigns the value f0ðsÞ 2 R,
� g: is the goal that determines whether the minimum (g = min)

or maximum (g = max) value of the objective function is
searched for.

Usually, the fitness function f is used in place of the objective
function fo. If we suppose that maxðfoðsÞÞ ¼minð�foðsÞÞ, then the
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goal g = max can always be transformed into g = min. In this man-
ner, we always search for the minimum value of the transformed
objective function. As a result, a definition of the optimization
problem can be reduced to a triple hI; S; f i. Note that the optimiza-
tion problem can appear in three different forms, as follows:

� Construction form: The optimal solution s� and to it the belong-
ing value of the fitness function f ðs�Þ needs to be calculated for
the instance x 2 S.
� Non-construction form: The optimal value of the fitness func-

tion f ðs�Þ is needed for the instance x 2 S.
� Decision form: For the particular instance x 2 S, it should be dis-

covered whether the optimal value of fitness function f ðs�Þ is
better than a certain prescribed constant K, more formally if
f ðs� 6 KÞ.

Further, optimization problems can be further divided into con-
tinuous, discrete, and mixed. Discrete optimization problems are
also referred to as combinatorial. The decision variables for a con-
tinuous optimization problem can occupy values within the do-
main of real values whilst the decision variables for a
combinatorial problem have discrete values. Mixed type has some
variables taking continuous, whilst other variables take discrete
values.

According to the number of objectives involved in the optimiza-
tion problem, this can be divided into single-objective and multi-
objective (also multi-criteria) (Zhou et al., 2011). The task of a sin-
gle-objective optimization is to find the optimal solution according
to only one objective function. When the optimization problem in-
volves more than one objective function, the task is to find one or
more optimal solutions regarding each objective (Deb, 2001). Here,
a solution that is good with respect to one objective can be worse
for another, and vice versa. Therefore, the goal of multi-objective
optimization is to find a set of solutions that are optimal with re-
spect to all other objectives, and such a set of solutions forms a
so-called Pareto front. Interestingly, most real-world problems
are multi-objective.

In some optimization problems, not all the possible combina-
tions of decision variables represent feasible solutions. This class
of problems is also known as constraint problems. Constraint prob-
lems can be divided into two different types: constraint satisfac-
tion problems (CSP) and constraint optimization problems (COP).
In contrast, if the problem is unconstrained, it is referred to as a
free optimization problem (FOP) (Eiben & Smith, 2003). CSP is de-
fined as a pair hS;/i, where S denotes a search space and / is a
Boolean function on S that represents a feasibility condition. In fact,
this function divides the search space S into feasible and infeasible
regions. A solution of the CSP problem is each s 2 S with
/ðsÞ ¼ true. On the other hand, COP is defined as a triple hS; f ;/i
where S denotes a search space, f is a real valued fitness function,
and / is a Boolean function on S. A solution of this problem is
the s 2 SðxÞ with /ðsÞ ¼ true and SðxÞ ¼ Sðx�Þ.

Optimization problems for dynamic (also non-stationary) envi-
ronments change over time. These changes can be implicitly de-
fined in a dynamic environment or there exists uncertainty about
the nature of the expected change, the magnitude of the changes,
and the duration of any static period between changes (Morrison,
2004). Algorithms for solving these problems should be able to re-
spond to changes in the environment. On the other hand, noise
concerns a fitness function. For instance, the fitness function is
noisy as a result of simulation/measurement errors or approxima-
tion errors (in the case where surrogates are used in place of the
computationally expensive high fidelity fitness function).

Engineering applies scientific principles to design or develop
structures, machines, processes, devices, and materials. That is,
engineering applications use an optimization theory and apply it
to problems arising in engineering. Most of these applications
implement those numerical calculations involved in optimization
algorithms that are intended for running on computer systems.
In this sense, the modern swarm intelligence methods and applica-
tions are indispensable.

The time complexity of an algorithm determines the way in
which the increase in the instance size influences the time com-
plexity (Garey & Johnson, 1979). This relationship can be expressed
by the so-called asymptotic time complexity function Oðf ðnÞÞ that
determines the upper-bound of time complexity for a given opti-
mization problem. The algorithmic theory divides problems into
two classes with regard to the asymptotic time complexity func-
tion: P-hard and NP-hard. Those problems that have polynomial
time complexity OðnkÞ and are treated as easy belong to the first
class. In contrast, problems of class NP-hard demonstrate the expo-
nential time complexity Oð2nÞ and are, therefore, treated as hard.
That is, the exponential time complexity may cause that some in-
crease in the input data can increase the solution time of the prob-
lem exponentially. In the worst case, we could be waiting for the
solution over an infinite period of time.

3. Quaternions’ algebra

Quaternions Hamilton (1899) are formal expressions
q ¼ x0 þ x1iþ x2jþ x3k, where x0; x1; x2; x3 are real values and they
constitute the algebra over the real numbers generated by basic
units i; j; k (also the imaginary part) that satisfy Hamilton’s
equations:

ij ¼ k; jk ¼ i; ki ¼ j;

ji ¼ �k; kj ¼ �i; ik ¼ �j;

i2 ¼ j2 ¼ k2 ¼ �1:

ð1Þ

The quaternions q 2 H describes a 4-dimensional space R4 over
the real numbers. Using this notation, a pair of quaternions is de-
noted as q0 ¼ x0 þ x1iþ x2jþ x3k and q1 ¼ y0 þ y1iþ y2jþ y3k. The
quaternion algebra defines the following operations on quater-
nions (Eberly, 2002):

� addition and subtraction: is defined by
q0 � q1 ¼ ðx0 þ x1iþ x2jþ x3kÞ � ðy0 þ y1iþ y2jþ y3kÞ
¼ ðx0 � y0Þ þ ðx1 � y1Þiþ ðx2 � y2Þjþ ðx3 � y3Þk:

ð2Þ
� scalar multiplication: is defined over the basic units i; j; k by Eq.
(1).
� multiplication: of quaternions is defined by
q0q1 ¼ ðx0 þ x1iþ x2jþ x3kÞðy0 þ y1iþ y2jþ y3kÞ
¼ ðx0y0 � x1y1 � x2y2 � x3y3Þ
þ ðx0y1 þ x1y0 þ x2y3 � x3y2Þi
þ ðx0y2 � x1y3 þ x2y0 þ x3y1Þj
þ ðx0y3 þ x1y2 � x2y1 þ x3y0Þk:

ð3Þ
Multiplication is not commutative because the product q0q1 – q1q0

in general.
� conjugate: is a unary arithmetical operation defined by
q� ¼ ðx0 þ x1iþ x2jþ x3kÞ� ¼ x0 � x1i� x2j� x3k: ð4Þ
The conjugation of quaternions satisfies the properties ðq�Þ� ¼ q and
ðq0q1Þ

� ¼ q�0q�1.
� norm: is defined by
kqk ¼ kx0 þ x1iþ x2jþ x3kk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 þ x2
1 þ x2

2 þ x2
3

q
: ð5Þ
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The norm is a real-valued function that satisfies the properties
kq�k ¼ kqk and kq0q1k ¼ kq0kkq1Þk. This function is suitable for
mapping the elements of vector (individual, solution) from a 4-
dimensional quaternion to a 1-dimensional real-valued element in
phenotype space.
� multiplicative inverse: of quaternion q is denoted as q�1 and has

the property qq�1 ¼ q�1q ¼ 1. It is constructed as
q�1 ¼ q�=kqk; ð6Þ
where the division of a quaternion by a real-value scalar is the divi-
sion of each component by the norm. The inverse operation satisfies
the properties ðq�1Þ�1 ¼ q and ðq0q1Þ

�1 ¼ q�1
0 q�1

1 .
� division: of quaternions q0 and q1 is defined by
q0=q1 ¼ q0q�1
1 : ð7Þ
� distance: of quaternions q0 and q1 is defined by
distðq0;q1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 � y0Þ

2 þ ðx1 � y1Þ
2 þ ðx2 � y2Þ

2 þ ðx3 � y3Þ
2

q
:

ð8Þ
In addition to pure quaternion algebra, two unary functions are
added as follows:

� qrand: is a quaternion defined as
qrandðÞ ¼ fxi ¼ Nð0;1Þ j for i ¼ 0 . . . 3g; ð9Þ
where Nð0;1Þ denotes a random number drawn from a Gaussian
distribution with zero mean and standard deviation one. In other
words, each component is initialized with the random generated
number.
� qzero: is a quaternion defined as
qzeroðÞ ¼ fxi ¼ 0 j for i ¼ 0 . . . 3g; ð10Þ
where each component of quaternion is initialized with zero.

These operations of the quaternion algebra serve as a reach basis
for developing the different variation operators used in swarm
intelligence. The rest of the paper presents the usage of these oper-
ations by developing the operators within the new FA algorithm
with the quaternion’s representation of individuals, in detail.

4. Firefly algorithm using a quaternion’s representation of
individuals

Fireflies (Coleoptera: Lampyridae) are well known for biolumi-
nescent signaling, which is used for species recognition and mate
choice (Long et al., 2012). Bioluminiscence that comprises a com-
plicated set of chemical reactions is not always a sexual signal only
but also warns off potential predators. In reminder of the paper,
the original FA algorithm is described that captures the bioluminis-
cent behavior of fireflies within fitness function. Further, this algo-
rithm is then modified using the quaternion’s representation of
individuals (QFA).

4.1. Original firefly algorithm

The light-intensity I of flashing firefly decreases as the distance
from source r decreases in terms of I / 1=r2. Additionally, the air
absorption causes the light to become weaker and weaker as the
distance from the source increases. This flashing light represented
the inspiration for developing the FA algorithm by Yang (2008).
Here, the light-intensity is proportional to the objective function
of the problem being optimized (i.e., IðsÞ / f ðsÞ, where s ¼ SðxÞ rep-
resent a candidate solution) (Fister, Fister, Yang, & Brest, 2013).
In order to formulate the FA, some flashing characteristics of
fireflies were idealized, as follows:

� All fireflies are unisex.
� Their attractiveness is proportional to their light intensity.
� The light intensity of a firefly is affected or determined by the

landscape of the objective function.

Note that light-intensity I and attractiveness are in some way
synonymous. While the intensity I is referred to as an absolute
measurement of emitted light by firefly, the attractiveness is rela-
tive measurement the light that should be seen in the eyes of
beholders and judged by the other fireflies (Yang, 2008). The light
intensity I varied with distance r is expressed by the following
equation

IðrÞ ¼ I0e�cr2
; ð11Þ

where I0 denotes the intensity light at the source, and c is a fixed
light absorption coefficient. Similarly, the attractiveness b that also
depends on the distance r is calculated according to the following
generalized equation

bðrÞ ¼ b0e�cr2
; for k P 1: ð12Þ

The distance between two fireflies i and j is represented as the
Euclidian distance

rij ¼ ksi � sjk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD

k¼1

sik � sjk

vuut ; ð13Þ

where sik is the k-th element of the i-th firefly position within the
search-space, and D denotes the dimensionality of a problem. Each
firefly i moves to another more attractive firefly j, as follows

si ¼ si þ b0e�cr2
ij ðsj � siÞ þ a � Nið0;1Þ: ð14Þ

Eq. (14) consists of three terms. The first term determines the
position of the i-th firefly. The second term refers to the attractive-
ness, while the third term is connected with the randomized move
of the i-th firefly within the search-space. This term consists of the
randomization parameter a, and the random numbers Nið0;1Þ
drawn from a Gaussian distribution. The scheme of FA is sketched
in Algorithm 1.

Algorithm 1. Original FA algorithm

1: t ¼ 0; s� ¼ ;; c ¼ 1:0; // initialize: gen.counter, best
solution, attractiveness

2: PðtÞ ¼ InitFAðÞ; // initialize the firefly population

sð0Þi 2 Pð0Þ

3: while t 6MAX GEN
4: aðtÞ ¼ AlphaNewðÞ; // determine a new value of a
5: EvaluateFAðPðtÞ; f ðsÞÞ; // evaluate sðtÞi according to f ðsiÞ
6: OrderFAðPðtÞ; f ðsÞÞ; // sort PðtÞi according to f ðsiÞ
7: s� ¼ FindTheBestFAðPðtÞ; f ðsÞÞ; // determine the best

solution s�

8: Pðtþ1Þ ¼MoveFAðPðtÞÞ; // vary attractiveness according
Eq. (14)

9: t ¼ t þ 1;
10: endwhile
11: return s�, f ðsÞ; // post process

The FA algorithm (Algorithm 1) runs on the population of fire-
flies PðtÞ that are represented as real-valued vectors
sðtÞi ¼ sðtÞi0 ; . . . sðtÞin , where i ¼ 1 . . . NP and NP denotes the number of
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fireflies in population PðtÞ at generation t. Note that each firefly sðtÞi

is of dimension D. The population of fireflies is initialized randomly
(function InitFFA) according to equation

sð0Þij ¼ ðubi � lbiÞ � randð0;1Þ þ lbi; ð15Þ

where ubi and lbi denote the upper and lower bounds, respectively.
The main loop of the firefly search process that is controlled by the
maximum number of generations MAX GEN consists of the follow-
ing functions:

� AlphaNew: calculating new values for the randomization
parameter a. This parameter is modified according to the fol-
lowing equation
D ¼ 1� 10�4=0:91=MAX GEN;

aðtþ1Þ ¼ 1� D � aðtÞ;
ð16Þ
where D determines the step size of changing the parameter aðtþ1Þ.
Note that this parameter monotony descends with the increasing of
generation counter t.
� EvaluateFA: evaluating the new solution sðtÞi according to a fit-

ness function f ðsðtÞÞ, where sðtÞi ¼ SðxðtÞi Þ.
� OrderFA: ordering solutions sðtÞi for i ¼ 1 . . . NP with respect to

the fitness function f ðsðtÞi Þ ascending, where sðtÞi ¼ SðxðtÞi Þ.
� FindTheBestFA: determining the best solution in the population

PðtÞ. Normally, the best solution becomes s� ¼ sðtÞ0 .
� MoveFA: moving the fireflies towards the search space accord-

ing to the attractiveness of their neighbors’ solution (Eq. (14)).

In the reminder of this paper, the modification using quater-
nions is discussed in more detail.

4.2. Modified firefly algorithm

The modified FA is based on the original FA, where the repre-
sentation of virtual fireflies is moved from an Euclidian space to
a quaternion space. In the Euclidian space, each virtual firefly is
represented as D-dimensional real-values vector si ¼ fsi0; . . . ; sing,
where sij 2 Rn, while in quaternion space as a D-dimensional vector
of quaternions qi ¼ fqi0; . . . ; qing, where qij 2 Hn ^H 2 R4. In line
with this, it is expected that although the quaternion space is more
complex, on the one hand, it is smoother for exploration, on the
other hand. Therefore, the search-process could be directed to-
wards the more promising areas of the search-space. The modified
algorithm can be seen in Algorithm 2.

Algorithm 2. Modified QFA algorithm

1: t ¼ 0; q� ¼ QzeroðÞ; c ¼ 1:0; // initialize: gen.counter,
best solution, attractiveness

2: Q ðtÞ ¼ InitQFAðÞ; // initialize the firefly population

xð0Þi 2 Pð0Þ

3: while t 6MAX GEN do
4: aðtÞ ¼ AlphaNewðÞ; // determine a new value of a
5: EvaluateQFAðQ ðtÞ; f ðkqkÞÞ; // evaluate qðtÞi according to
kqik

6: OrderQFAðQ ðtÞ; kqkÞ; // sort Q ðtÞ according to kqik
7: q� ¼ FindTheBestQFAðQ ðtÞ; kqkÞ; // determine the best

solution q�

8: Q ðtþ1Þ ¼MoveQFAðQ ðtÞÞ; // vary attractiveness
according Eq. (14)

9: t ¼ t þ 1;
10: endwhile
11: return q�, kqk; // post process
The modified FA differs from the original FA by using the qua-
ternion’s representation of individuals. In place of operations in
Euclidian space, quaternion algebra is employed in order to move
virtual fireflies towards the more promising areas of search space.
In fact, each 1-dimensional element of fireflies is represented by
the 4-dimensional quaternion’s representation. On this representa-
tion, however, the quaternion algebra is applied.

The QFA algorithm acts as follows. The population of quater-
nions is initialized in InitQFAðÞ using the qrandðÞ function. The solu-
tion s ¼ ðs0; . . . ; sDÞ in the Euclidian space is obtained from i-th
quaternions’ vector qi using the norm function as follows:

sj ¼ kqijk; for j ¼ 1 . . . D; ð17Þ

and evaluated by function EvaluateQFAðÞ the same as in the original
FA. The ordering of the virtual fireflies in the population stays un-
changed in the OrderQFAðÞ function. The same is also true when
finding the best solution in the FindTheBestQFAðÞ function. The focus
of the modified algorithm represents the MoveQFAðÞ function that
moves a population of virtual fireflies through the quaternion’s
search-space. Calculating the distance between the fireflies in the
search-space is expressed in the modified algorithm as follows:

rij ¼ distðqi;qjÞ; ð18Þ

where qi is the i-th virtual firefly position, and qj is the j-th virtual
firefly position in the search-space. Moving the firefly i to another
more attractive firefly j is expressed as follows:

qi ¼ qi þ b0e�cr2
ij ðqj � qiÞ þ a � e � QrandðÞ; ð19Þ

where rij represents the distance between the i-th and j-th fireflies
in the quaternion’s space, a is the randomization parameter, e the
scale, and the QrandðÞ is a random generated quaternion vector.
After moving the virtual fireflies, a verification function is launched.
It ensures that the new firefly position is under the prescribed lim-
itations, i.e., lbi 6 kqik 6 ubi.
5. Experiments and results

The goal of our experimental work was to show that quater-
nions can be appropriate for the representation of individuals in
QFA., Essentially, this paper focuses on the problem of whether
this representation of individuals can reduce the stagnation that
has often arisen in the original FA algorithm. In line with this,
the developed QFA was applied to the function optimization
problems as proposed by Yang (2010). The aim of the experimen-
tal work was twofold: on the one hand to show that QFA im-
proves the results of the original FA algorithm, and on the other
hand that the obtained results were comparable with the results
of the other EA algorithms like DE, and the other SI algorithms
like BA and ABC.

As mention before, this study focuses on solving the function
optimization problem. The function optimization belongs to a class
of continuous optimization problems and is defined as follows. Let
us assume, an objective function f ðsÞ is given, where s ¼ ðs1; . . . ; sDÞ
is a vector of D design variables in a decision space S. The design
variables sj 2 flbj;ubjg are limited by their lower lbj 2 R and upper
bounds ubj 2 R. The task of optimization is to find the minimum of
the objective function.

In the reminder of this paper, the test suite is described, the
experimental setup is presented, the configuration of the PC is
illustrated on which these experiments were run, and finally the
obtained results are presented. These results are then analyzed in
the sense of the appointed experimental goals.
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5.1. Test suite

The test suite consisted of ten functions which were selected
from two references. The first five functions were taken from
Karaboga’s paper (Karaboga & Basturk, 2007), in which the ABC
algorithm was introduced, while the last five were from the paper
of Yang (2010) that proposed a set of optimization functions suit-
able for testing the newly-developed algorithms.

The functions within the test suite can be divided into unimodal
and multimodal. The multimodal functions have two or more local
optima. The function is separable, when the set of variables can be
rewritten as a sum of the function of just one variable. The separa-
ble and multimodal functions are more difficult to solve. The more
complex functions are those that have an exponential number of
local optima randomly distributed within the search space. The
definitions and characteristics of functions constituting the test
suite, can be summarized as follows:

� Griewangk’s function:
f1ðsÞ ¼ �
YD

i¼1

cos
siffiffi

i
p
� �

þ
XD

i¼1

s2
i

4000
þ 1; ð20Þ
where si 2 ½�600;600�. The function has the global minimum f � ¼ 0
at x� ¼ ð0;0; . . . ;0Þ. It is highly multimodal, when the number of
variables is higher than 30.
� Rastrigin’s function:
f2ðsÞ ¼ D � 10þ
XD

i¼1

ðs2
i � 10 cosð2psiÞÞ; ð21Þ
where si 2 ½�15;15�. The function has the global minimum f � ¼ 0 at
x� ¼ ð0;0; . . . ;0Þ and is also highly multimodal.
� Rosenbrock’s function:
f3ðsÞ ¼
XD�1

i¼1

100ðsiþ1 � s2
i Þ

2 þ ðsi � 1Þ2; ð22Þ
where si 2 ½�15;15� and whose global minimum f � ¼ 0 is at
s� ¼ ð1;1; . . . ;1Þ. This function, also known as the ‘banana function’
has several local optima. Gradient-based algorithms are especially
difficult to converge to the global optima by optimizing this
function.
� Ackley’s function:
f4ðsÞ ¼
XD�1

i¼1

ð20þ e� 20e�0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5ðs2

iþ1
þs2

i
Þ

p

� e0:5ðcosð2psiþ1Þþcosð2psiÞÞÞ; ð23Þ
where si 2 ½�32:768;32:768�. The function has the global minimum
f � ¼ 0 at s� ¼ ð0;0; . . . ;0Þ and it is highly multimodal.
� Schwefel’s function:
f5ðsÞ ¼ 418:9829 � D�
XD

i¼1

si sin
ffiffiffiffiffiffi
jsij

p� �
; ð24Þ
where si 2 ½�500;500�. The Schwefel’s function has the global min-
imum f � ¼ 0 at s� ¼ ð1;1; . . . ;1Þ and is highly multimodal.
� De Jong’s sphere function:
f6ðsÞ ¼
XD

i¼1

s2
i ; ð25Þ
where si 2 ½�600;600� and whose global minimum f � ¼ 0 is at
s� ¼ ð0;0; . . . ;0Þ. The function is unimodal and convex.
� Easom’s function:
f7ðsÞ ¼ �ð�1ÞD
YD

i¼1

cos2ðsiÞ
 !

exp �
XD

i¼1

ðsi � pÞ2
" #

; ð26Þ
where si ¼ ½�2p;2p�. The function has several local minimum and
the global minimum f � ¼ �1 at s� ¼ ðp;p; . . . ;pÞ.
� Michalewicz’s function:
f8ðsÞ ¼ �
XD

i¼1

sinðsiÞ sin
is2

i

p

 !" #2�10

; ð27Þ
where si ¼ ½0;p�. The function has the global minimum
f � ¼ �1:8013 at s� ¼ ð2:20319;1:57049Þ in two-dimensional
parameter space. In general, it has several local optima.
� Xin-She Yang’s function:
f9ðsÞ ¼
XD

i¼1

jsij
 !

exp �
XD

i¼1

sinðs2
i Þ

" #
; ð28Þ
where si ¼ ½�2p;2p�. The function is not smooth because it has sev-
eral local optima and the global minimum f � ¼ 0 at s� ¼ ð0;0; . . . ;0Þ.
� Zakharov’s function:
f10ðsÞ ¼
XD

i¼1

s2
i þ

1
2

XD

i¼1

isi

 !2

þ 1
2

XD

i¼1

isi

 !4

; ð29Þ
where si ¼ ½�5;10�. The function has the global minimum f � ¼ 0 at
s� ¼ ð0;0; . . . ; 0Þ with no local optima.

The lower and upper bounds of the design variables determine
intervals that limit the size of the search space. The wider this
interval, the wider the search space. Note that the intervals were
selected so that the search space was wider than those proposed
in the standard literature. Another difficulty was represented by
the dimensions of the functions. Typically, the higher the dimen-
sional function, the more difficult to optimize.

5.2. Experimental setup

In this experimental study, the results of the following algo-
rithms were compared: FA, DE, BA, ABC, and QFA. In fact, DE be-
longs to the evolutionary algorithms, while the other algorithms
are members of the swarm intelligence community. As a termina-
tion condition, the number of fitness function evaluations (FEs) was
considered, in this paper. This value depends on the dimension of
the problem regarding the expression FEs ¼ 5000 � D. The maximal
number of generations (MAX T) is expressed as MAX T ¼ FEs=NP,
where NP represents the population size. However, the population
size is a crucial parameter for all population-based algorithms that
have a great influence on their performance. In line with this,
extensive experiments had been run in order to determine the
most appropriate setting of this parameter by all algorithms in
the test. As a result, the most appropriate setting of this parameter
NP ¼ 100 was considered during the experiments.

The specific FA parameters were set as follows: a ¼ 0:1, b ¼ 0:2,
and c ¼ 0:9. The same parameters were also used for the QFA algo-
rithm because both algorithms are the same except in representa-
tion of individuals.

The specific BA parameters were set as follows: the loudness
A0 ¼ 0:5, the pulse rate r0 ¼ 0:5, minimum frequency Qmax ¼ 0:0,
and maximum frequency Q max ¼ 0:1. The DE parameters were con-
figured as follows: the amplification factor of the difference vector
F ¼ 0:9, and the crossover control parameter CR ¼ 0:5. The per-
centage of onlooker bees for the ABC algorithm was 50% of the col-
ony, the employed bees represented another 50% of the colony,
whilst one scout bee was generated in each generation (i.e.,
limits ¼ 100, when the population size is NP ¼ 100).

All the algorithms were run 25 times. The results from the algo-
rithms were accompanied according to five standard measures, as
follows: the Best, the Worst, the Mean, the Stdev, and the Median
values.
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5.3. PC configuration

All runs were made on HP Compaq using the following
configurations:

1. Processor – Intel Core i7-2600 3.4 (3.8) GHz
2. RAM – 4 GB DDR3
3. Operating system – Linux Mint 12

All versions of the tested algorithms were implemented within the
Eclipse Indigo CDT framework.
5.4. Results

An aim of our experimental work was to find answers to the fol-
lowing questions:

� what influence the number of evaluations had on the results
during the QFA run,
� what influence the dimensionality of problems had on the

results of QFA,
� how good are the results of QFA when comparing with the

results of other optimization algorithms, like FA, DE, BA, and
ABC,
� how the quaternion’s representation of individuals can reduce

the stagnation in the original FA algorithm.

In the rest of paper, answers to these questions are quantified in
detail.
5.4.1. The influence of the number of evaluations
In this experiment, the best fitness values were recorded over

three different phases of the QFA’s search process, that is:
Table 1
Detailed results of QFA (D ¼ 30).

Evaluations Measures f1 f2

3.00E+004 Best 6.27E+00 3.32E+02
Worst 1.18E+02 4.17E+02
Mean 3.20E+01 3.67E+02
Stdev 1.99E+01 2.20E+01
Median 2.98E+01 3.70E+02

7.50E+004 Best 6.27E+00 2.60E+02
Worst 1.91E+01 3.27E+02
Mean 1.49E+01 2.90E+02
Stdev 2.79E+00 1.81E+01
Median 1.51E+01 2.93E+02

1.50E+005 Best 5.02E+00 5.42E+01
Worst 7.35E+00 1.92E+02
Mean 6.07E+00 1.20E+02
Stdev 4.56E�01 3.03E+01
Median 6.09E+00 1.15E+02

f6 f7

3.00E+004 Best 2.11E+004 0.00E+00
Worst 3.77E+005 0.00E+00
Mean 1.17E+005 0.00E+00
Stdev 5.84E+004 0.00E+00
Median 1.10E+005 0.00E+00

7.50E+004 Best 2.11E+004 0.00E+00
Worst 3.77E+005 0.00E+00
Mean 6.95E+004 0.00E+00
Stdev 6.48E+004 0.00E+00
Median 5.69E+004 0.00E+00

1.50E+005 Best 1.61E+004 0.00E+00
Worst 3.77E+005 0.00E+00
Mean 3.37E+004 0.00E+00
Stdev 7.14E+004 0.00E+00
Median 1.97E+004 0.00E+00
� at the beginning (i.e., 1
5 of the maximum number of fitness

evaluations),
� in the middle (i.e., 1

2 of the maximum number of fitness
evaluations),
� at the end of the run.

Indeed, the behavior of QFA was observed. The results of this
experiment by optimizing the functions of dimension D ¼ 30 are
illustrated in Table 1. In this table, the first measuring was taken
after 30,000 evaluations of fitness function, the second after
75,000, and third after 150,000 evaluations of fitness function.

As can be seen from Table 1, the stagnation problem cannot be
detected during the QFA search process.

That is, the Mean values by optimizing the functions from the
test suite constantly decreased, when the number of evaluations
increased. The same behavior was also observed for other mea-
sured values, like the Worst, the Best, the Stdev, and the Median.

Moreover, function f7 converged into the value zero by more
than 1

5 of the maximum number of fitness evaluations MAX FE.
5.4.2. The influence of the dimensionality of problems
In order to show how the dimension of the problem affects the

performance of algorithms, the dimensions of the functions
D ¼ 10, D ¼ 30, and D ¼ 50 were taken into consideration. In line
with this, the number of fitness evaluations for D ¼ 10 was limited
to 50,000, for D ¼ 30 to 150,000, and for D ¼ 50 to 250,000 fitness
evaluations.

The results of QFA algorithm optimizing ten test functions are
presented in Table 2, from which it can be seen that the QFA algo-
rithm achieved the better results when optimizing the functions
with lower dimensions. Therefore, the best results were obtained
by optimizing the functions with dimension D ¼ 10.
f3 f4 f5

3.12E+04 6.82E+00 3.68E+03
1.71E+05 2.03E+01 6.84E+03
1.03E+05 8.46E+00 5.10E+03
3.73E+04 2.51E+00 7.28E+02
1.04E+05 8.13E+00 5.09E+03

6.35E+03 5.40E+00 3.08E+03
6.84E+04 2.03E+01 6.08E+03
1.95E+04 6.44E+00 4.41E+03
1.19E+04 2.89E+00 6.67E+02
1.63E+04 5.93E+00 4.44E+03

4.48E+01 7.17E�01 2.62E+03
9.92E+02 2.00E+01 5.52E+03
2.94E+02 2.59E+00 3.93E+03
2.99E+02 3.66E+00 6.71E+02
1.71E+02 1.93E+00 3.94E+03

f8 f9 f10

0 �1.43E+001 1.11E�009 1.90E+001
0 �9.04E+000 3.02E�007 4.63E+001
0 �1.12E+001 7.61E�008 2.98E+001
0 1.13E+000 8.61E�008 7.75E+000
0 �1.10E+001 5.66E�008 2.88E+001

0 �1.51E+001 1.02E�010 7.62E+000
0 �1.07E+001 9.69E�008 1.60E+001
0 �1.29E+001 8.81E�009 1.19E+001
0 1.10E+000 2.05E�008 2.24E+000
0 �1.27E+001 2.62E�009 1.16E+001

0 �2.29E+001 1.23E�011 6.56E�002
0 �1.68E+001 1.73E�011 2.90E�001
0 �1.96E+001 1.49E�011 1.57E�001
0 1.39E+000 1.29E�012 5.51E�002
0 �1.95E+001 1.49E�011 1.47E�001



Table 2
Results of QFA according to dimensions.

Dimension Measure f1 f2 f3 f4 f5

10 Best 2.08E+00 1.09E+01 7.41E+00 1.24E�01 4.15E+02
Worst 2.75E+00 4.79E+01 3.67E+02 2.00E+01 1.62E+03
Mean 2.52E+00 2.25E+01 6.23E+01 2.90E+00 1.10E+03
Stdev 1.77E�01 9.82E+00 9.27E+01 6.44E+00 2.86E+02
Median 2.53E+00 2.10E+01 1.08E+01 4.18E�01 1.11E+03

30 Best 5.02E+00 5.42E+01 4.48E+01 7.17E�01 2.62E+03
Worst 7.35E+00 1.92E+02 9.92E+02 2.00E+01 5.52E+03
Mean 6.07E+00 1.20E+02 2.94E+02 2.59E+00 3.93E+03
Stdev 4.56E�01 3.03E+01 2.99E+02 3.66E+00 6.71E+02
Median 6.09E+00 1.15E+02 1.71E+02 1.93E+00 3.94E+03

50 Best 7.51E+00 1.55E+02 7.70E+01 1.55E+00 5.14E+03
Worst 9.81E+00 2.96E+02 3.44E+03 2.02E+01 8.53E+03
Mean 9.02E+00 2.21E+02 5.91E+02 8.57E+00 6.81E+03
Stdev 5.84E�01 3.98E+01 9.95E+02 8.82E+00 9.12E+02
Median 9.20E+00 2.16E+02 2.30E+02 2.29E+00 6.77E+03

f6 f7 f8 f9 f10

10 Best 5.76E+003 0.00E+000 �8.35E+000 2.35E�014 1.77E�003
Worst 7.03E+003 0.00E+000 �4.81E+000 2.14E�003 2.37E�002
Mean 6.80E+003 0.00E+000 �7.06E+000 1.64E�004 6.93E�003
Stdev 3.62E+002 0.00E+000 7.84E�001 5.68E�004 5.65E�003
Median 7.03E+003 0.00E+000 �7.04E+000 3.16E�014 4.75E�003

30 Best 1.61E+004 0.00E+000 �2.29E+001 1.23E�011 6.56E�002
Worst 3.77E+005 0.00E+000 �1.68E+001 1.73E�011 2.90E�001
Mean 3.37E+004 0.00E+000 �1.96E+001 1.49E�011 1.57E�001
Stdev 7.14E+004 0.00E+000 1.39E+000 1.49E�011 5.51E�002
Median 1.97E+004 0.00E+000 �1.95E+001 1.29E�012 1.47E�001

50 Best 2.88E+004 0.00E+000 �3.40E+001 5.16E�020 3.75E�001
Worst 3.77E+004 0.00E+000 �2.32E+001 1.33E�019 1.39E+000
Mean 3.22E+004 0.00E+000 �2.85E+001 6.59E�020 8.63E�001
Stdev 2.15E+003 0.00E+000 �2.84E+001 6.08E�020 2.69E�001
Median 3.19E+004 0.00E+000 2.58E+000 1.97E�020 8.43E�001

I. Fister et al. / Expert Systems with Applications 40 (2013) 7220–7230 7227
Stagnation during the QFA search process was also unobserved
for any of the dimensions taken into account, i.e., D ¼ 10, D ¼ 30,
and D ¼ 50. On average, optimizing the functions with higher
dimensions was more difficult than for those with lower
dimensions.

5.4.3. Comparative study
The intention of this subsection was to show how the new rep-

resentation of individuals in QFA can improve the results of an ori-
ginal FA and how good these results are when compared with the
other well known algorithms, like DE, BA, and ABC. In line with
this, all algorithms optimized the same suite of ten functions under
the same conditions. Finally, the results of this comparison were
substantiated using the Friedman statistical tests in order to eval-
uate the obtained results.

The results of this experimental study are illustrated in Table 3,
where the mean values and corresponding standard deviations are
presented according to ten functions (f1 to f10) and five algorithms
(FA, DE, BA, ABC, and QFA). Although experiments in all dimensions
were performed, only the results for dimension D ¼ 50 are pre-
sented. In summary, each function was optimized
5� 25� 3 ¼ 375 times (the number of algorithms� the number
of runs � the number of dimensions).

As can be seen from Table 3, the ABC algorithm reached the best
results optimizing almost the all functions except the function f10,
where the QFA algorithm was more successful, and f7, where all
algorithms achieved the same results, i.e., zero. Three Friedman
non-parametric tests were conducted according five characteristic
measures that captured the results with regard to different
dimensions.

In order to estimate the quality of results, the Friedman test was
conducted. The Friedman test (Friedman, 1937, 1940) compares
the average ranks of the algorithms. A null-hypothesis states that
two algorithms are equivalent and, therefore, their ranks should
be equal. If the null-hypothesis is rejected, i.e., the performance
of the algorithms is statistically different, the Bonferroni–Dunn test
(Demšar, 2006) is performed that calculates the critical difference
between the average ranks of those two algorithms. When the sta-
tistical difference is higher than the critical difference, the algo-
rithms are significantly different. The equation for the calculation
of critical difference can be found in Demšar (2006).

Friedman tests were performed using the significance level
0:05. The results of the Friedman non-parametric test are pre-
sented in Fig. 1 being divided into three diagrams that show the
ranks and confidence intervals (critical differences) for the algo-
rithms under consideration. The diagrams are organized according
to the dimensions of functions. Two algorithms are significantly
different if their intervals in Fig. 1 do not overlap.

The first diagram in Fig. 1 shows that the ABC algorithm signif-
icantly outperforms the results of the other four algorithms, i.e.,
QFA, BA, FA, and DE, according to dimension D ¼ 10. Amongst
the other four algorithms, the QFA was substantially better than
the other algorithms in test. The situation remained the same even
when the results were compared regarding the dimensions D ¼ 30
and D ¼ 50. That is, the ABC significantly improved the results of
the other four algorithms, whilst the QFA was substantially better
than the other algorithms in the test.

In summary, these results showed that the quaternion’s repre-
sentation of individuals substantially improved the original FA
algorithm (Hypothesis I) and that the obtained results were com-
parable with other algorithms in the test except for the ABC
(Hypothesis II). In order to improve the results of ABC, however,
other mechanisms like self-adaptation, etc., should be applied to
QFA. Thus, both two placed hypothesis were approved.



Table 3
Detailed results of algorithms (D ¼ 50).

Function Measure FA DE BA ABC QFA

f1 Mean 9.56E�001 1.39E+003 1.57E+002 1.05E�001 9.02E+000
Stdev 8.53E�002 1.08E+002 3.81E+001 5.45E�002 5.84E�001

f2 Mean 5.19E+002 1.55E+004 1.80E+003 2.29E+001 2.21E+002
Stdev 3.52E+001 1.55E+003 4.10E+002 7.14E+000 3.98E+001

f3 Mean 1.54E+004 1.59E+009 1.14E+006 1.72E+002 5.91E+002
Stdev 1.36E+004 3.12E+008 7.38E+005 1.30E+002 9.95E+002

f4 Mean 2.12E+001 2.09E+001 1.42E+001 2.05E+000 8.57E+000
Stdev 3.32E�002 3.32E�002 8.88E�001 3.57E�001 8.82E+000

f5 Mean 1.65E+004 2.83E+003 1.57E+004 2.49E+003 6.81E+003
Stdev 5.09E+002 5.12E+002 7.40E+002 2.36E+002 9.12E+002

f6 Mean 1.43E+001 5.60E+006 6.05E+005 3.79E�002 3.22E+004
Stdev 2.25E+000 5.64E+005 1.30E+005 5.35E�002 2.15E+003

f7 Mean 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000
Stdev 0.00E+000 0.00E+000 0.00E+000 0.00E+000 0.00E+000

f8 Mean �3.60E+000 �5.86E+000 �7.30E+000 �9.63E+000 �7.06E+000
Stdev 6.72E�001 1.05E+000 4.15E�001 2.42E�002 7.84E�001

f9 Mean 2.85E�002 1.32E�003 3.86E�003 4.54E�004 1.64E�004
Stdev 2.17E�002 6.33E�004 7.59E�004 1.82E�009 5.68E�004

f10 Mean 3.27E+005 5.13E+003 5.20E+002 5.34E+002 8.63E�001
Stdev 2.33E+005 2.44E+003 1.52E+002 3.96E+001 2.69E�001

FA

DE

BA

ABC

QFA

 1  2  3  4  5  6
Average rank (D=10)

 1  2  3  4  5  6
Average rank (D=30)

 1  2  3  4  5
Average rank (D=50)

Fig. 1. Results of the Friedman non-parametric test.
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5.4.4. Convergence plots
Finally, the question was posted as to how quaternion’s repre-

sentation of individuals reduces the stagnation within the QFA
search process. In line with this, those convergence graphs were
analyzed that were obtained by acting the search processes within
the QFA and FA algorithms by optimizing the functions f2; f3, and f10

for D ¼ 10. Two convergence diagrams were plotted for each ob-
served function. The former represents the behavior of the best va-
lue modified through the generations, whilst the latter the average
values modified throughout the generations. Note that the corre-
sponding maximum number of fitness evaluations was fixed at
50,000 by D ¼ 10.

All three best and average convergence plots in Figs. 2–4 illus-
trate the similar behavior of algorithms QFA and FA when optimiz-
ing the functions f2; f3, and f10. That is, the best value persistently
decreased when the number of generations was increased by the
QFA. In contrast, the best value of the FA decreased to the some ex-
tent and then did not improve anymore (stagnation). The average
value by the QFA algorithm describes a ridged curve, in contrast
to FA, where the curve is smoother.

On the other hand, the curve decreased persistently by the QFA,
whilst it became stable after some generations by the FA. As a re-
sult, the QFA search process retained a higher population diversity
that seemed to avoid the algorithm to getting stuck or falling into
stagnation.

Summary, the quaternion’s representation of individuals within
the QFA algorithm caused that the search process not to fall into
stagnation. In contrast, the convergence time increased slightly,
but it seems that the solution will be found when the maximum
number of fitness evaluations is increased.
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Fig. 2. Best and average convergence plots for f2 (D ¼ 10).
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Fig. 3. Best and average convergence plots for f3 (D ¼ 10).
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Fig. 4. Best and average convergence plots for f10 (D ¼ 10).
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6. Conclusion

This paper proposed a novel representation of individuals with
quaternions in the QFA algorithm. Quaternions are especially
appropriate for programming the video games and controllers of
spacecraft, where it is necessary to compute rotations with mini-
mal computation. On the other hand, they have been successfully
applied to the problems of theoretical physics. Quaternions are
rarely applied to solving the optimization problems.

Representation of individuals in population-based algorithms
(like EA and SI) has a crucial effects on the performance of such
algorithms. Additionally, the appropriate representation demands
also powerful operators that are able to take care on the explora-
tion of new solutions. These operators should not be discrimina-
tory to some areas of the search space. That is, each solution in
definite search space must be achieved with the some probability
using these parameters.

This paper proposes the quaternion’s representation of individ-
uals in the QFA population-based algorithm that maps each
1-dimensional real-valued element to 4-dimensional quaternion.
This representation seems to increase the search space enor-
mously, but it turns out that exploring this quaternion’s search
space is more effectively. The primary intention of this study was
to show that the stagnation problem often arisen in the SI algo-
rithms could be mitigated or even avoided using the quaternion’s
representation of individuals. Beside the original FA algorithm,
the second speculation should also be confirmed on the other SI
algorithms, in general.

However, this study has brought a new way in solving the hard-
est optimization problems. As this paper is the preliminary study
only, many alternative ways in using the quaternion’s representa-
tion of individuals remains still open for discovering in the future.
At first, what effect has the span function on the results of
optimization.
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