
Informatica 40 (2016) 109–116 109

Parameter Tuning of PI-controller with Bat Algorithm

Dušan Fister
University of Maribor, Faculty of Mechanical Engineering
Smetanova 17, 2000 Maribor
E-mail: dusan.fister@student.um.si

Riko Šafarič, Iztok Jr. Fister and Iztok Fister
University of Maribor, Faculty of Electrical Engineering and Computer Science
Smetanova 17, 2000 Maribor

Keywords: PI-controller, nature-inspired algorithms, optimization

Received: January 6, 2016

Correct input controller parameter settings are vital and in constant connection with output functions - e.g.
robotic positioning. Optimal positioning of robotic arm automatically provides a high level of safety and
functionality. The first prevents robot from hurting any people around or even itself, while the second
ensures robot advantage. In order to improve both safety and functionality, we propose two nature-inspired
algorithms for parameter tuning of PI-controller and test them on the laboratory robotic manipulator. How-
ever the manipulator is not designed to perform a real robotic work, it offers a detailed approach of position-
ing control. Our goal is to access the positioning control unit and combinatorially set the input controller
parameters with the help of two implemented algorithms. This principle is called automatic parameter
tuning, which firstly tests the corresponding setting, then evaluates it and finally tries to improve former
result with new one.

Povzetek: Za natančno pozicioniranje zahteva robotski regulator pravilno nastavljene parametre. Ti zago-
tavljajo varno in funkcionalno delovanje robota. S testiranji, opisanimi v nadaljevanju, želimo določiti op-
timalne konstante regulatorja z algoritmom za nastavljanje parametrov, ki sloni na nelinearnem, dvoosnem
robotskem mehanizmu. Implementirana optimizacijska algoritma temeljita na vzorih iz narave in določata
parametre avtomatsko, brez človeške interakcije. Naš pristop je iterativen, kar pomeni, da se želimo s
kombinatoričnim ugotavljanjem čimbolj približati idealni rešitvi, ki pa je sicer ne moremo doseči. Av-
tomatski postopek nastavljanja parametrov z optimizacijskim algoritmom predstavlja odskočno desko za
zagotavljanje varnosti ter funkcionalnosti, povečanega obsega dela robota ter višje natančnosti in kakovosti
izdelkov.

1 Introduction

A robot is typically an electro-mechanical device con-
trolled by a computer program. It operates in an environ-
ment which can be changed using actions for whether it is
delegated. The robot performs repeated actions that were
before executed by humans. They have been displaced and
upgraded by robots especially by performing dangerous
tasks, e.g., coating cars in the automotive industry, aero-
nautics, etc.

A robotic arm, for instance, is moved and positioned us-
ing a closed-control loop. The control loop consists of a
controller and a control plant. The controller is a part of
the electrical scheme, which controls a mechanical part of
the robotic arm (control plant). The control plant consists
of electrical motors to lift and lower the arm. However, this
process is subject of gravity forces.

Typically, the control loop is implemented by so called
PID-controllers in the real-world applications (Fig. 1). This
controller calculates an error value e between desired in-

CONTROLLER CONTROL PLANT
+

-

ydes

yact

e u

Figure 1: Scheme of a robot.

put value ydes and actually measured output yact . Then,
a derivative and integral of the error signal is calculated.
Actually, the output signal u is obtained as follows

u = KP (ydes − yact) +KI

∫
(ydes − yact) +KD(ydes − yact)

′
. (1)

Eq. (1) consists of three parts, i.e., proportional, integral
and derivative terms weighted by corresponding propor-
tional gain KP , integral gain KI and derivative gain KD,
respectively. The control signal u is sent to the control plant
in order to obtain the new output y that serves as the new
yact value for generating the new error signal e. This pro-
cess continues until equilibrium is achieved. Let us notice

110 Informatica 40 (2016) 109–116 D. Fister et al.

that the desired values are input variables that represent a
reference generator output, while the desired values are ob-
tained as a feedback of the control plant on the input vari-
ables. There are more types of the reference generators,
e.g., micro-controllers, DSP, FPGA, etc. A discrete equa-
tion of PID-controller can be written (Eq. 2).

u(k) =u(k − 1) + q0 · e(k)+

q1 · e(k − 1) + q2 · e(k − 2),
(2)

where
q0 = KP · (1 +KI +KD), (3)

q1 = −KP · (1 + 2 ·KD −KI) and (4)

q2 = KP ·KD. (5)

Only PI-controller type is used for our application. In
line with this, KD gain should be set to zero. Eq. 3-5 can
be then simplified to new form (Eq. 6-8):

q0 = KP · (1 +KI), (6)

q1 = −KP · (1−KI) and (7)

q2 = 0. (8)

In the next chapters, parameters q0 and q1 of PI-controller
will be optimized.

There are few strategies for parameter tuning of robotic
controller. Using Bode plotting [16] and root locus
method [4] a linear controller can be tuned. For non-linear
control plants, an iterative approach of tuning should be
employed. In this method, random parameters are entered
into the robotic controller and according to mechanic re-
sponse of manipulator little corrections are made through
more iterations. A new set is then entered into controller
and so on. The basic and the simplest strategy of tuning is
a manual approach. Requires an experienced and patient
engineer, what makes this strategy time-consuming. It can
be automated using the micro-controller, which makes the
process faster up to few times, but then an optimization al-
gorithm is required. Every algorithm is intended to find an
optimal solution of the problem, so the question is, how fast
can algorithm approach to an ideal solution? Today, many
algorithms are widely-known. They differ to each other
by the ease of use, complexity, principle of working and
most importantly, convergence speed. The last parameter
could be simply compared to algorithm’s efficiency. The
fact is, faster than the algorithm is searching, more local is
the search space becoming and slower it is searching, more
global it can go.

In previous century a greater demand of quality, quan-
tity and efficiency of making products was sensed. As a
result, an optimization has been became more and more
important. Using computer guided optimization, control-
ling machines have became easier and even more precisely
to use. Optimization algorithms are today frequently and
widely used in order to maximize quality and quantity of
products, to minimize the production costs as well as in-
crease the functionality, safety and duration of services.

For solving the real-world problems, where the domain-
specific knowledge is absent, a general problem solvers
have been emerged. Today, evolutionary and swarm intel-
ligence algorithms act increasingly in that role.

Basic principles of evolutionary algorithms (EA) were
discovered a bit longer ago. In 1871, Charles Darwin pub-
lished an article about natural selection [2]. Alan Tur-
ing was the first who successfully implemented the al-
gorithm [20], that based on results of Charles Darwin’s
work. He implemented an optimizational algorithm, named
genetic search, and has later also strived for other topics
of artificial intelligence. His work was upgraded by John
Holland in 1988, who created a genetic algorithm (GA)
that is today one of the most often worldwide used evolu-
tionary algorithm [13].

On the other hand, a new way of optimization was be-
ing commenced in 1995, called the Swarm Intelligence
(SI). Particle Swarm Algorithm (PSO) invented by Russell
Eberhart and James Kennedy [3] became quickly widely
used. Interestingly, the SI-based algorithms use the bio-
logical and social relations, since individuals collaborate
between each other by learning of experiences. Many SI-
based algorithms are known, e.g. ant colony, bee colony,
bird flocks, bats, cuckoo search, termites and fish schools.
The Bat algorithm (BA) is one of the newest, since it was
proposed in 2010 by Yang. The BA quickly widened for
testing purposes on various applications [23]. Firstly on
numeric and discrete applications, after that also for multi-
objective optimization [24]. The possibility of constrained
optimization was proved by Gandomi et. al. [10]. The
BA was hybridized with Differential Evolution strategies
in 2013 by Fister et. al. [9] as well as by Random Forest
Regression method [8]. The self-adaptation was proposed
by Fister et. al. [5] and [6], which presents one of the most
successful BA variants.

The remainder of the paper is divided into next sections:
Section 2 presents a control plant and controller. Section
3 describes both nature-inspired algorithms used in this
study, i.e., GA and BA.

2 Control plant

In this study, the 2 degree-of-freedom (2 DOF) Selective
Compliance Assembly Robot Arm (SCARA) [18] depicted
in Fig. 2 was taken into account. The robot arm is con-
trolled in a 2-dimensional space and parameters of this
controller are tuned by an optimization algorithm. Since
2005, four different optimization methods were proposed
for parameter tuning of the same robot. Albin Jagarinec
developed an adaptive regulator in 2005 [15], while Marko
Kolar the fuzzy controller in the next year [17]. A neural
sliding-mode controller was implemented on the system in
the same year by Jure Čas [21]. Finally, the genetic algo-
rithm was tested by Tomaž Slanič [19].

The control plant is responsible for moving the robotic
arm that is enabled by two direct-current ESCAP 28 D2R

Parameter Tuning of PI-controller with. . . Informatica 40 (2016) 109–116 111

Figure 2: 2-DOF robot.

11 motors and the appropriate power electronics. Opposite
to power electronics, two incremental decoders are con-
nected, which transform an incremental encoder’s signals
from both motors to angles of rotation. These are both pro-
cessed in a custom input/output interface card based on a
digital signal processor (DSP-2 Roby) [22]. Besides decod-
ing signals, the DSP-2 Roby serves also as motor’s driver.
In addition, the DSP-2 Roby retrieves other basic informa-
tion, like angles of rotation and time to personal computer,
which plots the step responses of the robot and outputs
usable information for evaluation of robot arm behavior.
Moreover, the optimization algorithm is also being run on
this processor.

2.1 Robot’s model
The robot’s model can be written using Eq. (9) basing on
the principles of Lagrangian mechanics, as follows

[
Jm1N1 +

a1+a2 cos(q2)
N1

a3+a2 cos(q2)
N1

a3+a2 cos(q2)
N2

Jm2N2 +
a3+J3o

N2

]
·
[
q̈1
q̈2

]
+

−a2 q̇2(2q̇1+q̇2)+sin(q2)
N1

a2 sin(q2)q̇1
2

N2

 =

[
τmot1

τmot2

]
,

(9)

where J means moment of inertia, l length of handles
and m mass of handles with gears. Parameters qi, q̇i and
q̈i mean position (angle of rotation), velocity and acceler-
ation of specific axis [21]. Eq. 10 presents the meaning of
parameters a1, a2 and a3.

a1 = I1 + I2 + I4 +m2 · l21T + (m3 +m4) · l21 +m4 · l22T
a2 = m4 · l1 · l2T

a3 = I4 +m4 · l22T

(10)

As seen, equation is a two dimensional, which tends the
control plant of robot as non-linear. The equation presents
the motor’s torque, necessary for correct motion of robot’s
peak. The full elaboration of this equation is presented
in [21]. Note that only proportional and integral gains (PI-
controller) were used in our study.

INPUT

VECTOR
SCARA

OUTPUT

VALUES

MICROCONTROLLER

Figure 3: Searching for the optimal parameter setting of the
PI-controller.

2.2 Optimization problem
In general, the optimization problem is defined as a quadru-
ple OP = 〈I, S, f, goal〉 [11], where I presents a set of in-
stances that can be arisen on the input, S is a set of feasible
solutions, f objective function and goal denotes if the min-
imum or maximum of the objective function is searched
for. The input vector is expressed as

x = {q0,1, q1,1, q0,2, q1,2}, (11)

where q0,1 and q1,1 mean the controller input parameters
for the first axis and q0,2 and q1,2 for the second axis of
a robotic manipulator. The task of the optimization is to
maximize the fitness function, i.e., max(fi). The fitness
function evaluates three different measures obtained as a
feedback y from the control plant consisting of:

– Overi - actual overshoot,

– Essi - actual steady state error and

– Timei - actual settling time.

According to mentioned measures, the fitness function is
expressed as follows:

f (y) =
2∑

i=1

1

2
(E1i(1− |Pi −Overi|)+

E2i(1− T imei) + E3i(1− Essi)),

(12)

where Eij are initialized constants representing weights
that determine an influence of the specific outputs for each
axis in Eq. 12. Obviously, the sum of these three constants
of specific axis is:

3∑
i=1

Eij = 1, (13)

where i is the specific output variable and j the specific
axis.

The optimization problem can now be defined as search-
ing the best input values in order to obtain the best output
values estimated by the fitness function. The process is
graphically presented in Fig. 3, from which it can be seen
that the optimization algorithm puts the input vector x to
SCARA robot arm controller that moves and its position is
then being measured. The output vector y is obtained after
the moving and positioning the arm. The value of fitness
function is determined from this vector.

112 Informatica 40 (2016) 109–116 D. Fister et al.

3 Algorithms for parameter tuning
of PI-controller

The majority of real-world problems with which human are
confronted today are NP-hard. This means that the time
complexity of solving these problems increases by increas-
ing a problem size. The problem size is estimated by the
number of input variables. As a results, when the number
of variables increased to some high value, the user can wait
for the results indefinitely. Therefore, engineers responsi-
ble for solving these in practice are not interested for their
optimal solutions, but they are satisfied with an approxi-
mate optimal solutions obtained in real-time as well. Con-
sequently, a lot of heuristic algorithms have been emerged
that are able to obtain the non-optimal solutions, but well
enough for practical applications.

The stochastic nature-inspired population-based algo-
rithms are heuristic methods that can be applied to prob-
lem domains, where no domain-specific knowledge has yet
been discovered. In this study, we focus on searching for an
optimal parameter tuning of PI-controller with EA and SI-
based algorithms. Precisely, a comparative study of the bat
algorithm (BA) and genetic algorithm (GA) for solving this
problem has been performed, where the former belongs to a
class of SI-based algorithms, while the latter is the member
of EA-family.

In the remainder of the paper, characteristics of both al-
gorithms are illustrated in details.

3.1 Bat algorithm
As already mentioned, BA is one of the newest represen-
tatives of SI-based algorithms. Since 2010, its reputation
and visibility are highly rising. Bat algorithm is easy to
implement and applicable to various applications. It offers
solid results by solving of the low-dimensional problems
and that is one of the reasons to be applied to tune the pa-
rameters of PI-controller. Thus, high convergence of the
BA algorithm is expected.

3.1.1 Fundamentals of Bat algorithm

Bats are night animals. Nature has given them ability
to navigate in darkness, using a so-called sonar, named
echolocation. This phenomenon consists of generating
an ultrasonic pulse, which echoes from obstacles and prey,
bouncing back to the bat, who calculates the distance to ei-
ther obstacle or prey. More information on bats behavior
and their abilities can be found in [14].

The BA algorithm treats bats as a swarm of bats, search-
ing for a prey. Since bats search for the prey individually,
BA emphasizes the phenomena of echolocation by con-
verging the whole swarm by approaching the found prey.
This means that one random individual can achieve the
whole swarm to divert for food. From the engineer’s point
of view, more food means higher fitness function and better
solution of the problem. The whole swarm is converging to

the best solution during generations by changing their cur-
rent positions.

3.1.2 Model of Bat algorithm

The moving of bats, their attitude and acting in a swarm
presented in previous section can be modelled using simple
mathematical equations. The whole modelling process is
described in [23], so only main results are shown here. At
first, three different variables should be defined describing
bat moving as follows:

– frequency of pulse Q(t)
i ,

– velocity v(t)
i and

– position x(t+1)
i ,

where Q(t)
i represents actual pulse frequency, v(t)

i velocity
of an individual bat and x(t+1)

i position of the i-th bat at
generation t.

The flight of a bat can be summarized in Eqs. 14-16:

Q
(t)
i = Q

(t)
min + (Q(t)

max −Q
(t)
min) · β, (14)

v
(t+1)
i = v

(t)
i +

[
x
(t)
i − x

(t)
best

]
·Qi, (15)

x
(t+1)
i = x

(t)
i + v

(t)
i . (16)

Output pulse frequency can vary in the interval Q(t)
i ∈

[Qmin, Qmax]. The random number β ∈ [0, 1] specifies the
output pulse and x(t)best presents the current best solution.

The BA search process consists of two components, i.e.,
exploration and exploitation. Exploration means a discov-
ering of the new solutions, while the exploitation directs
the search in the neighborhood of the existing solutions.
Both processes cannot be run simultaneously because they
typically depend on the variation operators, while balanc-
ing between exploration and exploitation performs a con-
trol parameter setting. There are more optimal parameter
settings.

In the BA, the exploration and exploitation components
of the search process are balanced by using two exploration
strategies and parameter r(t)i . The first exploration strategy
expressed by Eq. 16 is more explorative in its nature, while
the second strategy expressed as

xnew = xold + ε · Ā(t), (17)

implements the random walk, i.e., a kind of the local search
that is more focused on the exploitation of the current best
solution. Let us notice that xnew in the equation presents
new best solution, if applicable, and xold presents current
best solution. ε is the random number in range (-1,1) and
Ā(t) is the average loudness.

The last strategy is applied according to the pulse rate
r
(t)
i .The pulse rate is normally being changed during gener-

ations, where simulates nature behavior of bats outputting
loud pulses with low pulse rate when searching for preys
and outputting silent pulses with high pulse rate when ap-
proaching to the prey.

Parameter Tuning of PI-controller with. . . Informatica 40 (2016) 109–116 113

3.1.3 Pseudocode of Bat algorithm

A pseudo-code of the BA algorithm is illustrated in Algo-
rithm 1. This algorithm consists of the following elements:

– initialization of bat population (function ’init_bat’ in
line 1),

– generation of new solution according to Eq. 16 (func-
tion ’generate_new_solution’ in line 6),

– the local search step according to Eq. 17 and parame-
ter r(t)i (function ’improve_the_best_solution’ in lines
7-9),

– evaluation of the new solution (function ’evalu-
ate_the_new_solution’ in line 10),

– save the best solution conditionally (in lines 12-15),

– find the best solution (in line 15).

BA is a population algorithm, what means that a popula-
tion size and maximal number of generations should be
pre-defined. During the optimizational process, the new
position is being calculated for every bat and generation
value is incremented. The execution of algorithm stops
when maximal number of generations are reached.

Algorithm 1 Original Bat algorithm.
Input: Bat population xi = (xi1, . . . , xiD)T for i = 1 . . . Np,
MAX_FE.
Output: The best solution xbest and its corresponding value
fmax = max(f(x)).

1: init_bat();
2: eval = evaluate_the_new_population;
3: fmax = find_the_best_solution(xbest);
4: while termination_condition_not_met do
5: for i = 1 to Np do
6: y = generate_new_solution(xi);
7: if rand(0, 1) > ri then
8: y = improve_the_best_solution(xbest)
9: end if{local search step}

10: fnew = evaluate_the_new_solution(y);
11: eval = eval + 1;
12: if fnew ≥ fi and N(0, 1) < Ai then
13: xi = y; fi = fnew;
14: end if{save the best solution conditionally}
15: fmax=find_the_best_solution(xbest);
16: end for
17: end while

3.2 Genetic algorithm
As already mentioned, GA was one of the first optimization
algorithms, belonging to a family of EA [1]. Although GA
is similar as BA a population-based algorithm, it differs in
comparison to BA a lot.

3.2.1 Fundamentals of Genetic algorithm

GA searches for the global optimum using unique genetic
operators. There are three common operators, i.e., a selec-
tion, a crossover and a mutation. The parent’s selection is
a part of algorithm, where so called parent genomes (so-
lution of the problem) are chosen to enter into crossover
procedure. The two common parent selections are roulette-
wheel selection and tournament selection [12]. Crossover
is the most important part of the algorithm, since it enables
the two parents to vary their genetic material in order to
improve the existing solutions. The last operator, mutation
could be represented as a rescue method, which prevents al-
gorithm from trapping in local optima, which usually stops
improving process. A task of the survivor selection is to
determine the better solutions for surviving and transfer-
ring their good characteristics in the next generations.

Nevertheless, the basic GA consists of six elements:

– initialization of individuals,

– parent’s selection,

– crossover,

– mutation,

– evaluation and

– survivor’s selection.

Initialization is a process, where random (starting) popula-
tion is generated and evaluation is process where the fitness
value determining success of each individual is calculated.
The optimization runs until the number of generations has
not reached its maximum specified value, or its optimal
value was found or enough quality solution was discovered.
The most important issue by using the EA is the represen-
tation of individuals. Although the original GA uses binary
representation, where solutions are represented as binary
strings, the real-coded GA is becoming more important to-
day. This type of GA is applied also in this study.

3.2.2 Pseudocode of Genetic algorithm

The pseudo-code of the GA is presented in Algorithm 2,
from which it can be seen the following elements of the
GA:

– initialization of initial population (function
’init_population_with_random_candidate_solutions’
in line 1),

– parent’s selection (function ’select_parents’ in line 4),

– crossover operator (function ’recom-
bine_pairs_of_parents’ in line 5),

– mutation operator (function ’mu-
tate_the_resulting_offspring’ in line 6),

– evaluation function (function ’evalu-
ate_new_candidates’ in line 7),

114 Informatica 40 (2016) 109–116 D. Fister et al.

– survivor’s selection (function ’se-
lect_individuals_for_the_next_generation’ in line
8).

The main evolutionary cycle is performed until the ’ter-
mination_condition_not_met’ is not met. Each solution
is represented as real-coded vector x(t)i = {x(t)i,j}, where
i = 1, . . . ,NP ∧ j = 1, . . . ,D , NP is a population and D
a dimension of the problem.

Algorithm 2 Evolutionary algorithm.
1: init_population_with_random_candidate_solutions;
2: eval = evaluate_each_candidate;
3: while termination_condition_not_met do
4: select_parents;
5: recombine_pairs_of_parents;
6: mutate_the_resulting_offspring;
7: eval += evaluate_new_candidates;
8: select_individuals_for_the_next_generation;
9: end while

3.3 Parameter tuning of PI-controller with
nature-inspired algorithms

In order to solve parameter tuning of PI-controller, the
nature-inspired algorithms need to be modified properly.
As we know, the results of our optimization problem de-
pend on the input vector xi according to Eq. 11. This
means that only a representation of solution for the nature-
inspired algorithms must be changed in order to adapt them
for solving the parameter setting of PI-controller. In other
words, the solution in these algorithms is represented as
follows

x(t)
i = {xi,j}, for i = 1, . . . , NP ∧ j = 1, . . . , D, (18)

where xi,1 = q0,1, xi,2 = q1,1, xi,3 = q0,2 and xi,4 =
q1,2, and NP denotes a population size and D is a dimen-
sion of the problem. All the other elements of the origi-
nal nature-inspired algorithms do not demand any modifi-
cations.

4 Results
The goal of our experimental work was to show that
the stochastic nature-inspired algorithms can successfully
be applied for searching the optimal parameters of PI-
controller that controls the robotic arm SCARA. In line
with this, two population-based algorithms were devel-
oped and customized to this problem, i.e., BA and GA.
The development was performed on a personal computer
(PC) with installed Windows operating system and MAT-
LAB/Simulink in language C/C++. The algorithms were
loaded onto DSP2-Roby interface card, where these were
also executed, while the results were received from the
card via USB connection to the PC and displayed in MAT-
LAB/Simulink.

The algorithm’s parameters as presented in Table 1 were
used during the simulation.

Parameter Setting
NP 10
ngen 10
Q [0.5,1.5]
β [0,1]
ri 0.1
Ai 0.9

(a) BA

Parameter Setting
NP 10
ngen 10
pc 0.8
pm 0.01
Par.sel. Tour.m = 2
Sur.sel. Fittest

(b) GA

Table 1: Parameter setting by nature-inspired algorithms.

Let us notice that both algorithms used the same num-
ber of fitness function evaluations, i.e., MAX _FE = 10×
10 = 100, where MAX _FE = NP × ngen . This number
of fitness function evaluations is relatively low, but this set-
ting enables algorithms to run in the real-time. In order to
limit the search space rationally, lower and upper bounds as
presented in Table 2 were considered during the optimiza-
tion for both algorithms.

Parameter
Bounds

Lower Upper
q0,1 0 400
q1,1 0 40
q0,2 0 400
q1,2 0 40

Table 2: Limited values of parameters.

In the table, parameters q0,1 and q1,1 denote limited pa-
rameter values for axis 1, while q0,2 and q1,2 limited values
for axis 2.

The results of the optimization using algorithms BA and
GA are illustrated in Table 3, from which it can be ob-
served that 10 independent runs were conducted for each of
the algorithm in test. This is normally, when dealing with
stochastic algorithms, where we are usually not interested
for the best solution, but rather the average results of the
optimization. However, in our case, we made an exception
here and considered the best solutions. The obtained results
for each of two axis are presented together with the corre-
sponding average values and the average values according
to all runs are presented. The best results are marked in the
table as bold.

As can be seen from the table, the best result of the BA
was obtained in seventh run, while the GA was the best in
the third run. When comparing the results of both algo-
rithms with each other, it can be observed that the result
achieved by GA was slightly better than this achieved by
the BA. However, when these results were estimated statis-
tically using the Wilxocon signed rank non-parametric test
with confidence α = 0.05, it turned out that the BA outper-
formed the results of GA significantly (p-value= 0.03 <
0.05).

Parameter Tuning of PI-controller with. . . Informatica 40 (2016) 109–116 115

Run BA GA
Axis-1 Axis-2 Average Axis-1 Axis-2 Average

1 0.9729 0.9726 0.9727 0.9804 0.9600 0.9702
2 0.9795 0.9497 0.9646 0.9729 0.9556 0.9642
3 0.9702 0.9847 0.9775 0.9726 0.9845 0.9786
4 0.9757 0.9802 0.9780 0.9455 0.9653 0.9554
5 0.9778 0.9592 0.9685 0.9638 0.9443 0.9540
6 0.9724 0.9790 0.9757 0.9782 0.9640 0.9711
7 0.9746 0.9810 0.9778 0.9752 0.9727 0.9740
8 0.9647 0.9887 0.9767 0.9774 0.9409 0.9592
9 0.9787 0.9733 0.9760 0.9721 0.9569 0.9645

10 0.9748 0.9430 0.9589 0.9662 0.9568 0.9615
Average 0.9741 0.9712 0.9726 0.9704 0.9601 0.9653

Table 3: Comparing the results of BA and GA.

The corresponding best results as obtained by BA and
GA algorithms are presented in Table 4.

Alg.
Axis-1 Axis-2

Eff.
q0,1 q1,1 q0,2 q1,2

BA 257.064 18.9201 163.155 15.1531 0.9778
GA 56.4213 3.27043 108.571 7.68699 0.9786

Table 4: The best results obtained by BA and GA.

As can be observed from the table, there is not only
one optimal solution, because both sets of input parameters
were very different when compared between each other.
However, it seems that more important is a relation be-
tween both pairs of input parameters.

In order to show how the optimal values are changed dur-
ing the optimization, the convergence graphs in Fig. 4 are
drawn that depict a changing of the best solution during one
run according to increasing of generations for each of the
observed algorithm.

Figure 4: Convergence graph by BA and GA.

As can be seen from the graph, the BA showed a rapid
convergence to the optimal value, which is already found in
fifth generation. After this generation the algorithm shows
signs of stagnation. On the other hand, the GA converge

to the optimal value slower. Therefore, it can improve the
results also in later generations.

5 Conclusion

The aim of our experimental work was to show that
stochastic nature-inspired population-based algorithms can
successfully be applied to tuning parameters of PI-
controller of the robot arm SCARA. Two nature inspired
algorithms were taken into consideration, i.e., the BA and
GA algorithms. The former is simple and easy to imple-
ment and because of its rapid convergence interesting to
use in robotics.

The results of experiments showed that both the algo-
rithms can be used for optimal tuning parameters of PI-
controller. Although the BA algorithm significantly out-
performed the results of GA according to the best obtained
results for each of two axis in ten runs, it turned out that the
GA converges slower than the BA. This means that the GA
demands the larger population as well as higher number of
generations. On the other hand, increasing the population
size and/or the maximum number of generations causes in-
creasing the optimization time that can dramatically affect
the real-time response of the system. In this context, the
BA algorithm is more appropriate for this optimization as
GA.

In the future, the BA algorithm could be hybridized with
differential evolution mutation strategies [9] and thus the
results of optimization would be improved. An adaptation
of control parameters represents additional method, where
these are encoded into representation of solutions and un-
dergo acting the variation operators [7].

References

[1] T. Bäck. Evolutionary algorithms in theory and prac-
tice: evolution strategies, evolutionary programming,
genetic algorithms. Oxford university press, 1996.

116 Informatica 40 (2016) 109–116 D. Fister et al.

[2] C. Darwin. R.(1859): On the origin of species by
means of natural selection. Murray. London, 1871.

[3] R. C. Eberhart and J. Kennedy. A new optimizer us-
ing particle swarm theory. In Proceedings of the sixth
international symposium on micro machine and hu-
man science, volume 1, pages 39–43. New York, NY,
1995.

[4] W. R. Evans. Control system synthesis by root locus
method. American Institute of Electrical Engineers,
Transactions of the, 69(1):66–69, 1950.

[5] I. Fister, S. Fong, J. Brest, and I. Fister. A novel hy-
brid self-adaptive bat algorithm. The Scientific World
Journal, 2014, 2014.

[6] I. Fister, S. Fong, J. Brest, and I. Fister. Towards the
self-adaptation in the bat algorithm. In Proceedings
of the 13th IASTED international conference on arti-
ficial intelligence and applications, 2014.

[7] I. Fister, D. Strnad, X.-S. Yang, and I. Fister Jr.
Adaptation and hybridization in nature-inspired algo-
rithms. In Adaptation and Hybridization in Compu-
tational Intelligence, pages 3–50. Springer, 2015.

[8] I. Fister Jr, D. Fister, and I. Fister. Differential evo-
lution strategies with random forest regression in the
bat algorithm. In Proceedings of the 15th annual con-
ference companion on Genetic and evolutionary com-
putation, pages 1703–1706. ACM, 2013.

[9] I. Fister Jr, D. Fister, and X.-S. Yang. A hybrid bat
algorithm. Elektrotehniški vestnik, 2013.

[10] A. H. Gandomi, X.-S. Yang, A. H. Alavi, and S. Ta-
latahari. Bat algorithm for constrained optimiza-
tion tasks. Neural Computing and Applications,
22(6):1239–1255, 2013.

[11] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York, NY,
USA, 1979.

[12] D. E. Goldberg and K. Deb. A comparative analy-
sis of selection schemes used in genetic algorithms.
Foundations of genetic algorithms, 1:69–93, 1991.

[13] D. E. Goldberg and J. H. Holland. Genetic algorithms
and machine learning. Machine learning, 3(2):95–99,
1988.

[14] D. R. Griffin. Listening in the dark: the acoustic ori-
entation of bats and men. 1958.

[15] A. Jagarinec. Adaptivni regulator z mehko logiko za
dvoosni SCARA mehanizem. Diplomsko delo : Uni-
verza v Mariboru, Fakulteta za elektrotehniko, raču-
nalništvo in informatiko, 2005.

[16] L. H. Keel and S. P. Bhattacharyya. A bode plot char-
acterization of all stabilizing controllers. Automatic
Control, IEEE Transactions on, 55(11):2650–2654,
2010.

[17] M. Kolar. Vodenje SCARA robota z mehko logiko.
Diplomsko delo : Univerza v Mariboru, Fakulteta za
elektrotehniko, računalništvo in informatiko, 2005.

[18] H. Makino, N. Furuya, K. Soma, and E. Chin. Re-
search and development of the scara robot. In Pro-
ceedings of the 4th International Conference on Pro-
duction Engineering, pages 885–890, 1980.

[19] T. Slanič. Genetski regulator za dvoosnega SCARA
robota. Diplomsko delo : Univerza v Mariboru,
Fakulteta za elektrotehniko, računalništvo in infor-
matiko, 2006.

[20] A. M. Turing. Intelligent machinery, a heretical the-
ory. The Turing Test: Verbal Behavior as the Hall-
mark of Intelligence, page 105, 1948.

[21] J. Čas. Izdelava zveznega nevronskega sliding-mode
regulatorja za teleoperiranje SCARA robota. Diplom-
sko delo : Univerza v Mariboru, Fakulteta za elek-
trotehniko, računalništvo in informatiko, 2006.

[22] M. Čurkovič. Vgrajeni sistemi DSP/FPGA v sis-
temih vodenja. Magistrsko delo Univerza v Mari-
boru, Fakulteta za elektrotehniko, računalništvo in in-
formatiko, 2010.

[23] X.-S. Yang. A new metaheuristic bat-inspired algo-
rithm. In Nature inspired cooperative strategies for
optimization (NICSO 2010), pages 65–74. Springer,
2010.

[24] X.-S. Yang. Bat algorithm for multi-objective optimi-
sation. International Journal of Bio-Inspired Compu-
tation, 3(5):267–274, 2011.

