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Abstract

The Artificial Bee Colony (ABC) is the name of an optimization algorithm that was inspired

by the intelligent behavior of a honey bee swarm. It is widely recognized as a quick, reliable, and

efficient methods for solving optimization problems. This paper proposes a hybrid ABC (HABC)

algorithm for graph 3-coloring, which is a well-known discrete optimization problem. The results

of HABC are compared with results of the well-known graph coloring algorithms of today, i.e.

the Tabucol and Hybrid Evolutionary algorithm (HEA) and results of the traditional evolutionary

algorithm with SAW method (EA-SAW). Extensive experimentations has shown that the HABC

matched the competitive results of the best graph coloring algorithms, and did better than the

traditional heuristics EA-SAW when solving equi-partite, flat, and random generated medium-sized

graphs.
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I. INTRODUCTION

Graph coloring represents a test bed for many newly developed algorithms because of

its simple definition, which states: How to color a graph G with the k colors, so that

none of the vertices connected with an edge have the same color. The coloring c is proper

if no two connected vertices are assigned to the same color. A graph is k-colorable if it

has a proper k-coloring. The minimum k for which a graph G is k-colorable is called its

chromatic number χ(G).

Many approaches for solving the graph coloring problem (GCP) have been proposed over

the time [12, 20]. The most natural way to solve this problem is, however, in a greedy fashion,

where the vertices of the graph are ordered into a permutation, and colored sequential.

Thus, the quality of coloring depends on the permutation of the vertices. For example,

the DSatur algorithm [3], one of the best traditional heuristics for graph coloring today,

orders the vertices v according to saturation degrees ρ(v). The saturation degree represents

the number of distinctly colored vertices adjacent to the vertex v. Furthermore, DSatur’s

ordering is calculated dynamically during the coloring process.

Many heuristic methods have been developed for larger instances [12] because exact

algorithms can only color instances of up to 100 vertices. These methods can be divided

into local search methods [1] and hybrid algorithms [19]. The most important representative

of the former is Tabucol [15], which utilizes the tabu search, as proposed by Glover [14]. Later

were combined local search methods with evolutionary algorithms and improved the results

of pure Tabucol, as for example, the hybrid genetic algorithm by Fleurent and Ferland [10],

and the hybrid evolutionary algorithm (HEA) by Galinier and Hao [11].

Swarm intelligence is the collective behavior of a self-organized system. Birds, insects,

ants, and fish use collective behavior for foraging and defending. These individuals are look-

ing for good food sources and help each other when a lack of food has arisen. This concept

was introduced into the computer’s world by Kennedy and Eberhart [18]. Moreover, it was

successfully applied to several problem domains, for example, particle swarm optimization,

which achieves good results during antenna optimization [24]. In addition, ant colony op-

timization reaches good results by solving the traveling-salesman person [6]. Finally, the

artificial bee colony algorithm, proposed by Karaboga and Basturk [17], exhibited excellent

results when solving combinatorial optimization problems [21, 25].
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This paper focuses on the artificial bee colony (ABC) algorithm for graph 3-coloring

(3-GCP), which belongs to a class of NP -complete [13] problems. There, the real-valued

weights w are assigned to the vertices v. These weights determine how difficult the vertex

is to color. The higher the weight, the earlier the vertex should be colored. Thus, weights

define the order in which the vertices should be colored. This ordering is used by the DSatur

traditional algorithm for constructing 3-coloring. The ABC algorithm incorporates DSatur

as a decoder. In this manner, the ABC algorithm acts as a meta-heuristic concerned for

a generation of new solutions (vector of weights), whilst the quality of the solution (its

fitness) is evaluated by DSatur. This approach is not new: it was used by the evolutionary

algorithm with SAW method (EA-SAW) of Eiben et al. [8], and by the hybrid self-adaptive

differential evolution of Fister et al. [9]. In the former case, instead of Dsatur, a greedy

heuristic was applied as a decoder. Finally, the proposed ABC algorithm was hybridized

with a random walk with direction exloitation (RWDE) [23] local search heuristic. This

local search heuristic was applied in place of the original sending scouts function and focuses

itself on discovering new food sources in the vicinity of the current sources.

The results of the proposed hybrid artificial bee colony algorithm for graph 3-coloring

(HABC) was compared with the results obtained with Tabucol, HEA, and EA-SAW for

solving an extensive set of random medium-scale graphs generated by the Culberson graph

generator [5]. A comparison between these algorithms shows that the results of the pro-

posed HABC algorithm are comparable with results of the other algorithms used in the

experiments.

The structure of this paper is as follows: In Section 2, the 3-GCP is discussed, in detail.

The HABC is described in Section 3, whilst the experiments and results are presented in

Section 4. The paper is concluded with a discussion about the quality of the results, and

directions for further work are outlined.

II. GRAPH 3-COLORING

3-coloring of a graph G = (V,E) is a mapping c : V → C, where C = {1, 2, 3} is a set

of three colors [2]. Note that V in the graph definition denotes a set of vertices v ∈ V and

E a set of edges that associates each edge e ∈ E to an unordered pair of vertices (vi, vj) for

i = 1 . . . n ∧ j = 1 . . . n.
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3-GCP can be formally defined as a constraint satisfaction problem (CSP) that is repre-

sented as the pair 〈S, φ〉, where S = Cn with Cn = {1, 2, 3} denotes the free search space,

in which all solutions c ∈ Cn are feasible and φ a Boolean function on S (also a feasibility

condition) that divides search space into feasible and unfeasible regions. This function is

composed of constraints belonging to edges. In fact, to each e ∈ E the corresponding con-

straint be is assigned by be(〈c1, . . . , cn〉) = true if and only if e = (vi, vj) and ci 6= cj. Assume

that Bi = {be|e = (vi, vj) ∧ j = 1 . . .m} defines the set of constraints belonging to variable

vi. Then, the feasibility condition φ is expressed as a conjunction of all the constraints

φ(c) = ∧v∈VBv(c).

Typically, constraints are handled indirectly in the sense of the penalty function that

transforms the CSP into free optimization problem (FOP) [7] (also unconstrained problem).

Thus, those infeasible solutions that are far away from a feasible region are punished by

higher penalties. The penalty function that is also used as a fitness function here, is expressed

as:

f(c) = min
n∑

i=0

ψ(c, Bi), (1)

where the function ψ(c, Bi) is defined as:

ψ(c, Bi) =

1 if c violates at least one b ∈ Bi,

0 otherwise.
(2)

In fact, Eq. (1) can be used as a feasibility condition in the sense that φ(c) = true if and

only if f(c) = 0. Note that this equation evaluates the number of constraint violations and

determines the quality of solution c ∈ Cn.

III. HABC FOR GRAPH 3-COLORING

In the ABC algorithm, the colony of artificial bees consists of three groups [27]: employed

bees, onlookers, and scouts. The employed bees discover each food source, that is, only one

employed bee exists for each food source. The employed bees share information about food

sources with onlooker bees, in their hive. Then, the onlooker bees can choose a food sources

to forage. Interestingly, those employed bees whose food source is exhausted either by
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employed or onlooker bees, becomes scouts. The ABC algorithm is formally described in

Algorithm 1, from which it can be seen that each cycle of the ABC search process (statements

within a while loop) consists of three functions:

• SendEmployedBees(): sending the employed bees onto the food sources and evaluating

their nectar amounts,

• SendOnlookerBees(): sharing the information about food sources with employed bees,

selecting the proper food source and evaluating their nectar amounts,

• SendScouts(): determining the scout bees and then sending them onto possibly new

food sources.

Algorithm 1 Pseudo code of the ABC algorithm

1: Init();
2: while !TerminationConditionMeet() do
3: SendEmployedBees();
4: SendOnlookerBees();
5: SendScouts();
6: end while

However, before this search process can take place, initialization is performed (func-

tion Init()). A termination condition (function TerminationConditionMeet()) is responsi-

ble for stoping the search cycle. Typically, the maximum number of function evaluations

MAX FES is used as the termination condition.

The ABC algorithm belongs to population-based algorithms, where the solution of an

optimization problem is represented by a food source. The solution of 3-GCP is represented

as a real-valued vector Yi = {wij} for i = 1...NP ∧ j = 1...n, where wij denotes the weight

associated with the j-th vertex of the i-th solution; NP is the number of solutions within

the population, and n the number of vertices. The values of the weights are taken from the

interval wij ∈ [lb, ub], where lb indicates the lower, and ub the upper bounds. The initial

values of the food sources are generated randomly, according to the equation:

wij = Φij · (ub− lb) + lb, (3)

where the function Φij denotes the random value from the interval [−1, 1].
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The employed and onlooker bees change their food positions within the search space,

according to the equation:

w
′

ij = wij + Φij(wij − wkj), (4)

where Φij is a random number from interval [−1, 1]. The onlooker bee selects a food source

with regard to the probability value associated with that food source pi calculated by the

equation:

pi =
f(Γ(Yi))∑NP
j=0 f(Γ(Yj))

, (5)

where Γ indicates a mapping from the real-valued search space to the problem search space,

as explained in the next subsection, and f the fitness function according to Eq. (1).

A. Fitness calculation

The ABC for 3-GCP explores continuous real-valued search space, where the solution

is represented as Yi = {wij} for i = 1...NP ∧ j = 1...n. Firstly, this solution needs to

be transformed into a permutation of vertices Xi = {vij}. Such a permutation can be

decoded into 3-coloring Ci = {cij} by the DSatur heuristic. The 3-coloring Ci represents

the solution of 3-GCP in its original problem space. Whilst a new position regarding a food

source is performed within the real-valued search space, its quality is evaluated within the

original problem space, according to the equation Eq.(1). This relation can be expressed

mathematically as follows:

Xi = Γ(Yi), for i = 1...NP . (6)

Note that the function Γ is not injective, i.e. more than one food source can be mapped

into the same value of the fitness function. On the other hand, a weakness of this function is

that a small move in the real-valued search space can cause a significant increase or decrease

in the fitness function.
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B. Hybridization with local search

In the classical ABC algorithm, scouts act as a random selection process. That is, if

the position of a food source cannot be improved further within a predetermined number

of cycles called limit, then that source is replaced by the randomly generated position. In

HABC, instead of randomly generating the new position in the search space (exploration), a

deterministic exploitation in the vicinity of the current solution was used [16]. Thus, in place

of the original SendScouts() function, the RWDE local search heuristic was implemented,

which generates the new food sources according to the following equation [23]:

Y
′

i = Yi + λ · Ui, (7)

where λ is the prescribed scalar step size length and Ui is a unit random vector generated

for the i-th solution.

IV. EXPERIMENTS AND RESULTS

The goal of the experimental work was to show that HABC can be successfully applied

to 3-GCP. In line with this, the proposed HABC was compared with: EA-SAW, Tabucol,

and HEA, whose implementations were downloaded from the Internet.

The characteristics of the HABC used during the experiments were as follows: The

population size was set at 100 because this value represents a good selection, as was indicated

during the experimental work. The value of limit was set at 1,000, whilst the MAX FES

was limited to 300,000. The former value was obtained through experimental work, whilst

the later was selected in order to draw a fair comparison with the other algorithms, i.e.

the other algorithms also obey the same limitation. In the end, 25 independent runs were

observed, because of the stochastic nature of observed algorithms.

The algorithms were compared according to two measures: success rate (SR) and

average number of objective function evaluations to solution (AES). The first measure

expresses the ratio of the number of successful runs from among all runs, whilst the second

reflects the efficiency of a particular algorithm.
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A. Test suite

All graphs in the test suite were generated using the Culberson random graph gener-

ator [5], which allows to generate graphs of different: size n, type t, edge probability p,

and seed s. This paper focuses on medium-sized graphs, i.e. graphs with 500 vertices.

Three types of graphs were used as follows: uniform (a random graph with variability set

at zero), equi-partite, and flat graphs. The edge probability was varied from 0.008 to 0.028

with steps of 0.001. Thus, 21 instances of randomly generated graphs were obtained. Ten

different seeds were employed, i.e. from 1 to 10. In summary, each algorithm was solved

3× 21× 10× 25 = 15, 750 different instances of graphs.

An interval of edge probabilities was selected such that the region of phase transition

was included. Phase transition is a phenomenon that is connected with most combinatorial

optimization problems and indicates those regions, where the problem passes over the state

of ”solvable” to the state of ”unsolvable”, and vice versa [26]. The 3-GCP determination of

this phenomenon is connected with parameter edge probability. Interestingly, this region is

identified differently by many authors. For example, Petford and Welsh [22] stated that this

phenomenon occurs when 2pn/3 ≈ 16/3, Cheeseman et al. [4] when 2m/n ≈ 5.4, and Eiben

et al. [8] when 7/n ≤ p ≤ 8/n. In our case, the phase transition needed to be by p = 0.016

over Petford and Welsh, by p ≈ 0.016 over Cheeseman, and between 0.014 ≤ p ≤ 0.016 over

Eiben et al..

B. Influence of edge probability

In this experiment, the phenomenon of phase transition was investigated, as illustrated

by Fig. 1. The figure is divided into six graphs according to type, and two different measures

SR and AES. The graphs capture the results of 21 instances that were obtained by varying

the edge probability through a region, including phase transition. Due to space limitation

of this paper’s length, a more detailed analysis of the results is left to the reader.

In summary, the best results on medium-sized graphs were reported by HEA and Tabu-

col. The results of HABC were slightly worse but comparable to both of the mentioned

algorithms, whilst the EA-SAW saw the worst results.
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FIG. 1: Results of algorithms for 3-GCP solving different types of random graphs

C. Influence of the local search

During this experiment, the influence of hybridizing the ABC algorithm with a RWDE

local search heuristic was observed. Therefore, a especial focus was placed on the instances

during phase transition, i.e. p ∈ [0.013, 0.017]. The two versions of ABC were compared:

the original and the hybridized version. In the former, the scouts were generated randomly,

whilst in the later the RWDE local search heuristic was used.

The results of this experiment are shown in Table I, where the row Graphs indicates

different graph types, whilst the columns Random and Hybrid indicate the original and the
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hybrid ABC algorithms. Note that the average results of the mentioned instances have a

varying seed s ∈ [1, 10] and are presented in the table.

TABLE I: Influence of the local search by HABC on different graph types.

Graphs Uniform Equi-partite Flat

p Random Hybrid Random Hybrid Random Hybrid

0.013 0.816 0.848 0.872 0.912 1.000 1.000

0.014 0.112 0.404 0.200 0.448 0.012 0.256

0.015 0.060 0.248 0.036 0.304 0.000 0.000

0.016 0.180 0.528 0.104 0.524 0.000 0.004

0.017 0.328 0.856 0.340 0.828 0.000 0.028

avg 0.299 0.577 0.310 0.603 0.202 0.258

The results showed that using the RWDE local search, substantially improved the results

of the original ABC. For example, this improvement amounted to 92.98% for uniform, 94.52%

for equi-partite, and 27.72% for flat graphs. On average, hybridization improved the results

of the original ABC for 71.74%.

V. CONCLUSION

The results of the proposed HABC for 3-GCP convinced us that the original ABC al-

gorithm is a powerful tool for solving combinatorial optimization problems. HABC gained

results that are comparable with the results of the best algorithm for k-GCP today (Tabucol

and HEA), and improved results obtained with EA-SAW when solving the medium-sized

extensive suite of random generated graphs. Note that these graphs are not the hardest

to color but are difficult enough that the suitability of the ABC technology for solving the

3-GCP could be successfully proven.

In the future, the HABC for 3-GCP could be additionally improved. In particular, the

problem-specific knowledge via local search heuristics could be conducted into the algorithm.

The greatest challenge for further work remains the solving of large-scale graph suite (graphs

with 1,000 vertices). We are convinced that these graphs could also be successfully solved

using the proposed HABC algorithm.
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