
Building visual domain-specific languages using the
semiotic approach: A case study on EasyTime

Iztok Fister Jr.
Faculty of Electrical Engineering and Computer

Science, University of Maribor
Smetanova 17, 2000 Maribor, Slovenia

iztok.fister1@um.si

Iztok Fister
Faculty of Electrical Engineering and Computer

Science, University of Maribor
Smetanova 17, 2000 Maribor, Slovenia

iztok.fister@um.si

ABSTRACT
This paper presents the development and usage of the Easy-
Time III Visual Domain-Specific Language (VDSL) for mea-
suring time during sports competitions that enables users
to create the VDSL programs visually. Indeed, this new
hybrid VDSL creating approach deals with semiotics‘ anal-
ysis in place of building a meta-model. Thus, each visual
element, like an icon, is handled as a sign with its repre-
sentation (form and shape), reference (object) and mean-
ing (implementation of object). Each visual element is then
mapped into DSL language construct as defined by object
implementation. In general, this approach is suitable, when
Domain-Specific Language (DSL) using a Textual User In-
terface (TUI) is already implemented within a certain appli-
cation domain and, therefore, the developer can be focused
mainly on designing a Graphical User Interface (GUI). In
this study, the existing EasyTime DSL has been upgraded
to EasyTime III VDSL using the hybrid VDSL creation ap-
proach. Experiments of measuring time in an aquathlon
have shown that the programming in EasyTime III is sim-
ple and efficient, whilst all other features of EasyTime DSL
are preserved within the new VDSL.

Keywords
domain-specific language, EasyTime, semiotics

1. INTRODUCTION
Until recently, measuring time during sports competitions
was performed manually by timekeepers using time obtained
from stopwatches assigned to specific competitors accord-
ing to their starting numbers. The rapid expansion of Ra-
dio Frequency IDentification (RFID) [6] technology has led
into the development of various measuring devices. How-
ever, measuring devices represent only one part of the story,
because measuring times during sports competitions can-
not be achieved without a measuring system. This system
collates timed-events from different measuring devices into
a central database that enables organisers to track the re-

sults of competitors faster, more efficiently, and more accu-
rately. In order to simplify working with the measuring sys-
tem for tracking the results, the EasyTime domain-specific
language was proposed for the Double Triathlon in 2009 [7].
This version, based on a specific compiler/generator, was
developed for compiling an EasyTime source code into an
abstract machine code. Modifying and widening the Easy-
Time domain-specific language demanded interventions di-
rectly into the compiler/generator. Therefore, an improved
version of EasyTime was proposed in [8, 11, 10, 9], where
EasyTime was defined formally as (domain analysis, ab-
stract syntax, concrete syntax, formal semantics, and code
generation), whilst a LISA [18] was used for building as a
suitable compiler/generator. In this paper, we move for-
ward in order to improve user experience and, thus, propose
EasyTime III Visual Domain-Specific modelling Language
(VDSL). This explores the visual interface to simplify the
programming tasks of the measuring system. This VDSL
addresses the shortcomings of its predecessor, i.e., simplify-
ing its development. The users’ visual programming consists
of constructing the user model. This model is then trans-
lated into EasyTime DSL constructs. Indeed, a semiotics
theory [12] is applied. Semiotics is the study of signs [2],
where each sign consists of representation, object, and mean-
ing. The meanings of the signs are defined explicitly in the
user model [5]. Thus, a meta-model step can be avoided by
the traditional creation of DSMLs. This approach is, there-
fore, also named as a hybrid VDSL creation. The VDSL was
tested on building the EasyTime III program for measuring
time during the aquathlon competition. The obtained re-
sults showed the power of the created visual tool that brings
a great user experience on the one hand and simplified cre-
ating the visual programs.

The structure of the paper is as follows. Section 2 deals with
a description of the proposed EasyTime III VDSL. In Sec-
tion 3, created VDSL was applied for building the EasyTime
III VDSL program in measuring time during an aquathlon
competition. The paper concludes with Section 4, which
summarizes the performed work and outlines the possible
directions for the future.

2. EASYTIME III VISUAL DSL
The design of visual languages is a very complex process
that, besides a knowledge of computer science, demands also
the knowledge of areas like Psychology, Sociology, Anthro-
pology, Linguistics, Design, and Engineering. For the devel-
opment of EasyTime III VDSL, the following phases need

StuCoSReC Proceedings of the 2016 3rd Student Computer Science Research Conference
Ljubljana, Slovenia, 12 October 27

to be carried out:

• Concept analysis,

• Visualization of features,

• Semiotic analysis,

• Code generation.

In the remainder of the paper all the mentioned phases are
described in detail.

A concept analysis identifies the concepts and relations be-
tween concepts. The analysis of a measuring time domain
summarizes the results as proposed in [8] because VDSL
EasyTime III addresses the same application-domain (i.e.,
measuring time) as the original EasyTime DSL. The concept
analysis divides the concepts into features, and then these
features into sub-features. However, the features and sub-
features may be mandatory or optional. In order to denote
the attitudes between concepts, features and sub-features,
the concept analysis defines the following relations:

• all : All features or sub-features are mandatory.

• more-off : The feature may be either one of the sub-
features from a set of sub-features or any combination
of sub-features from the same set.

• one-off : The feature may be one of the sub-features
from a set of sub-features but not any combination of
sub-features from the same set.

The concept diagram of the measuring time domain is de-
picted in Figure 1, from which it can be seen that the concept
Race consists of seven features (i.e., Events, Transition area,
Control points, Measuring time, Begin, End and Agents).

2.1 Visualization of features
During the visualization process, the features are mapped
into appropriate graphical interfaces, as presented in Ta-
ble 2.1. The Table is interpreted as follows. Icons Ibegin and
Iend denote the features Begin and End, respectively. Events
can be represented using icons Iswim , Ibike , and Irun and de-
scribed the sub-features, as follows: Swimming, Cycling, and
Running. The feature Transition areas is identified by icon
Ita , while Measuring devices are marked using icons Imd0 ,
Imd1 , and Imd2 .

2.2 Semiotics‘ analysis
Semiotics is the study of ’everything that can be taken as a
sign’ [17]. This is an interdisciplinary theory that comprises
domains of meanings in a variety of other disciplines like
Psychology, Anthropology, Biology, Logic, Linguistics, Phi-
losophy, and even Software Engineering [4]. Modern semi-
otics consists of two independent theories, as follows: Semi-
ology and semiotics. The former was developed in Switzer-
land by Ferdinand de Saussure [16], while the latter in North
America by Charles Sanders Peirce [13]. De Saussure’s the-
ory of signs originated from the language theory as a system
of arbitrary signifying units. The Peircean theory of signs

is based on logic and epistemology [2]. He defined the sign
as anything that stands for something else, to somebody, in
some respect or capacity. Nothing is a sign until it is in-
terpreted by somebody. Peirce described signs as threefold
structures consisting of: Representation, reference (object),
and meaning (interpretation) (Figure 2). Two characteris-
tics of these structures are valid: Firstly, a direct connection
between a representation and reference need not necessarily
exist. Secondly, a meaning is always a mediator between a
representation and reference. That is, the sign does not ex-
ist until some interpretation of representation is taken that
has some meaning for somebody. In other words, a sign re-
quires the concurrent presence of all three characteristics.
On the other hand, there can be many meanings to a sign.
In our study, the Peircean structure of signs was taken into

Figure 2: Structure of signs.

account in order to prescribe the unique meanings of them.
Indeed, unique translation of signs can be achieved to Easy-
Time domain-specific language constructs. In line with this,
semantic analysis is not needed for this translation. There-
fore, this process of generating the EasyTime III VDSL was
named a hybrid approach, and it can be applied usefully
when the textual DSL is already developed in this applica-
tion domain and an upgrade to the visual interface needs
to be developed. The semiotics of EasyTime III can be de-
scribed with the structures as illustrated in Table 2, from
which it can be seen that each icon is represented by a cor-
responding object. In our study, objects are represented as
C++ classes. The objects’ meanings are defined by the im-
plementation code. The source code in EasyTime DSL is
generated as a result of the implementation.

For instance, an icon Ibegin is referenced with an object
Begin that is created by a parameter Laps which determines
the number of laps. This object is responsible for generat-
ing the EasyTime DSL language construct ”upd STARTx”.
Note that this character x denotes the integer value (also
location counter, lc) necessary for distinguishing the dif-
ferent instances of the same variables because, in contrast,
the same names of the variables will be generated for dif-
ferent control points. The variable lc is initialized during
race configuration. The icons Iswim, Ibike, Irun representing
the events are represented by objects Event (Algorithm 1)
that are responsible for generating two DSL EasyTime lan-
guage constructs ”dec ROUNDx” and ”upd INTERx” (Al-
gorithm 2). A class Event consists of three variables (type,
laps, lc) and three methods (constructor Event, initialize,

StuCoSReC Proceedings of the 2016 3rd Student Computer Science Research Conference
Ljubljana, Slovenia, 12 October 28

Race

swimming cycling running start
number
of laps finish

update
time

decrement
laps automatic manual

Events
Transition

area
Control
points End

Measuring
time

AgentsBegin

Figure 1: Concept diagram of measuring time domain.

Table 1: Translation of the application domain features to graphical elements.
Application domain features Graphical elements

Begin race Ibegin
Events (Swimming, Cycling, Running) Iswim, Ibike, Irun
Transition area Ita
End race Iend

Measuring time Imd0 , Imd1 , Imd2

Control points (start, number of laps, finish) square dots (control points)
Agents (automatic, manual) square dots (measuring points)

Algorithm 1 Definition of object ’Event’

1: class Event {
2: int type; // type of events Swim, Run, Bike
3: int laps; // number of laps
4: int lc; // index of generated variables
5:
6: Event(int Type, int Laps, int Lc);
7: void initialize();
8: void generate();
9: }

generate). The variable type determines the type of event,
i.e., Swim, Run, Bike, variable laps the number of laps that
the competitor needs to accomplish a specific discipline, and
variable lc determines the instance of a specific variable. The
variable laps is a context information which is obtained by
the user. The method Event constructs the object with ap-
propriate parameters, method initialize generates the spe-
cific EasyTime DSL code necessary to initialize the variables
within the scope, and the method generate generates the
specific EasyTime DSL code appropriate for this event. A
detailed implementation of the mentioned methods can be
seen in Algorithm 2.

Algorithm 2 Implementation of object ’Event’

1: Event::Event(int Type, int Laps, int Lc)
2: type = Type; laps = Laps;
3: lc = Lc;
4: }
5: void Event::initialize() {
6: gen(op init, var round, lc, laps);
7: gen(op init, var inter, lc, 0);
8: }
9: void Event::generate() {

10: gen(op dec, var round, lc);
11: gen(op upd, var inter, lc);
12: }

Note that the other objects are represented and implemented
in a similar manner.

2.3 Code generation
Code generation is divided into:

• the source code generation,

• the object code generation.

In the first phase, a visual representation of a real race
using the graphical elements (also user model) is mapped
into the EasyTime DSL source code while, in the second
phase, this source code is compiled into object code using
the LISA [18] compiler/generator. Semantic domains need
to be defined for translating the graphical elements into the
EasyTime DSL source code. In EasyTime III, two semantic
domains are defined (Table 3). Both domains are used for
a proper calling of the objects represented in the Table 4 in
the translation phase. The former (i.e., DEvent) defines sub-
features of the feature Event, while the latter (i.e., DEvent)
sub-features of the feature Md. All the other parameters of
the corresponding objects are of integer type. In the sec-

Table 3: Semantic domains in EasyTime III.
DEvent = {Swim,Bike,Run} Event Type ∈ DEvent

DMd = {Md0 ,Md1 ,Md2} Md Type ∈ DMd

ond phase, the EasyTime DSL source code translated from
the corresponding user visual model is generated into virtual
machine object code. The readers can obtain more informa-
tion about this process in [8].

StuCoSReC Proceedings of the 2016 3rd Student Computer Science Research Conference
Ljubljana, Slovenia, 12 October 29

Table 2: Translation of the application domain concepts to semiotic signs.
Icons Objects Meanings

Ibegin Begin(Laps,Lc) ”(ROUNDx == %Laps)→ upd STARTx ;”
Iswim , Ibike , Irun Event(Event Type,Laps,Lc) ”dec ROUNDx ;”

”upd INTERx ;”
Ita End(Lc) ”(ROUNDx == 0)→ upd FINISHx ;”

Begin(Laps,Lc) ”(ROUNDx == %Laps)→ upd STARTx ; ”
Iend End(Lc) ”(ROUNDx == 0)→ upd FINISHx ;”
Imd0 , Imd1 , Imd2 Md(Md Type,Mp,Ag , [Ip|Fn]) ”mp[%Mp] ← agnt[%Ag] {” | ”}”

3. MEASURING TIME IN AN AQUATHLON
COMPETITION USING EASYTIME III
VDSL

Aquathlon is a relatively young sport, the first National
Competition being held in the USA in 1965. It belongs to a
class of multi-sports, where the race consists of continuous
two-stage disciplines involving swimming followed by run-
ning [14, 15]. Between both disciplines, however, a so-called
transition area exists, where the competitors who finish the
swimming prepare themselves for running. The time spent
in the transition area is added to the final result of each
specific competitor. Aquathlons are similar to triathlons.
Triathlons, however, have cycling in addition to swimming
and running. As a result, an aquathlon covers triathlon dis-
tances as well. For instance, a 1 km swim is followed by a 5
km run, etc. Distances vary depending upon the race venue
and race organisers. For building the EasyTime III visual
programs, an EasyTime III visual editor was developed us-
ing the Qt [1, 3], where a lot of bindings with other languages
also exist, e.g., Java, Python, Ruby, etc. The visual program
in an EasyTime III visual editor for measuring time during
an aquathlon competition is illustrated in Figure 3. The vi-
sual editor is the graphical editor for describing the race to
be measured. It consists of a graphical editor area, where
the race should be described and a control area consisting
of the buttons necessary for editing. In fact, the buttons
represent either the application domain features or miscel-
laneous controls devoted to managing the visual programs.
These buttons are divided into three subsets representing:

• the race configuration, i.e., buttons for dragging the
icons representing the control points (e.g., Ibegin, Iend,
Iswim, Ibike, Irun, Ita) and dropping them into specific
positions within the visual editor area,

• situated measuring devices, i.e., buttons for dragging
the icons representing the measuring points (e.g., Imd1,
Imd2, Imd0) and dropping them into specific positions
within the visual editor area,

• controls, namely the buttons necessary for opening,
saving and erasing the visual programs, and generating
the object code from the visual program.

Note that the graphical editor area consists of two fields
in which icons are placed sequentially. The upper is sen-
sitive to the buttons designated control points, whilst the
lower to the buttons described measuring points. In fact, the
upper fields of icons determine the configuration of a race,

whilst the lower fields are where measuring devices have to
be situated. Each icon also includes a square dot that en-
ables the control point to be connected with the measuring
point. Moreover, the transition area icon, similar to the
measuring device with two mats, includes two square dots.
Connection has to be made by dragging the source control
point and dropping it into the destination measuring point
or vice versa. Furthermore, the EasyTime III visual editor
also includes certain context dependent information, like the
number of laps, IP address of the measuring device, or an
input file name. Zero laps on the swimming icon means
that the swimming will not be measured on this measuring
device. This information can be obtained by pressing the
right-hand mouse button. The measuring time during an
aquathlon competition is configured as follows. The upper
graphical editor field determines the race configuration (i.e.,
start of race, swimming, transition area, running and fin-
ish of race), whilst the lower graphical editor field denotes
situated measuring devices (i.e., realised by a measuring de-
vice with two measuring points). The connections between
the control points and measuring points determine where the
particular event has to be measured. For instance, the finish
time of swimming has to be measured at measuring point
1 (antenna mat 1), whilst the other three running events
(start time, intermediate times, and finish time) have to be
measured at measuring point 2 (antenna mat 2).

3.1 Source code generation for measuring time
in an aquathlon competition

Source code generation starts with translating the user vi-
sual model (consisting of icons and links) into semiotics ob-
jects. Indeed, an area of central points CP and area of
measuring points MP together with an adjacent matrix rep-
resenting connections between control and measuring points
are generated. The results of this translation are illustrated
in Table 4. It can be seen from the Table that the control
points‘ area CP consists of six semiotics objects represent-
ing two disciplines (e.g., swimming and running) embraced
between Begin and End semiotics objects. The generated
names of the variables in these semiotics objects are distin-
guished according to their location counter. For instance, all
variables referring to the first discipline are generated with
lc = 1, whilst the variables referring to the second disci-
pline with lc = 2. There are two measuring points within
an area MP, and four links where the time should be mea-
sured. Note that the adjacent matrix LN designates the
connections between the control and measuring points. The
program presented in the Algorithm 3 is generated according
to the race configuration. This generation is straightforward
when someone follows the code generation as defined by the

StuCoSReC Proceedings of the 2016 3rd Student Computer Science Research Conference
Ljubljana, Slovenia, 12 October 30

Race configuration

Measuring devices

Controls

START STOP

10 LAPS0 LAPSSTART STOPTA

SWIM
END

RACE
BEGIN
RACE

TABIKERUN

MANUALAUTO-2AUTO-1

GENERATESAVEOPEN

ERASESAVE AS...COPY

192.168.225.2

Figure 3: Visual program for measuring time in an aquathlon competition.

Table 4: Result of algorithm ’config race’.
CP = { Begin(0,1),Event(Swim, 0, 1),End(1),Begin(0,2),Event(Run, 10, 2),End(2) }
MP = { Md(Auto-2,1,1,”192.168.225.2”), Md(Auto-2,2,1,”192.168.225.2”) }
LN = { (3,1),(4,2),(5,2),(6,2) }

Algorithm 3 Source code for measuring time during on
aquathlon.

1: 1 auto 192.168.225.2;
2:
3: START1 = 0;
4: ROUND1 = 0;
5: INTER1 = 0;
6: FINISH1 = 0;
7: START2 = 0;
8: ROUND2 = 10;
9: INTER2 = 0;

10: FINISH2 = 0;
11:
12: mp1[1] → agnt[1] {
13: (ROUND1 == 0) → upd FINISH1;
14: }
15: mp1[2] → agnt[1] {
16: (ROUND2 == 10) → upd START2;
17: (true) → upd INTER2;
18: (true) → dec ROUND2;
19: (ROUND2 == 0) → upd FINISH2;
20: }

meanings of the semiotics objects. Note that this code is
functionally equivalent to the code written by the domain
expert manually. Later, EasyTime LISA compiler/generator
is used for object code generation [8].

4. CONCLUSION
This paper proposes a new hybrid VDSL creation approach
that is suitable when the DSL already exists in certain appli-
cation-domain. In this manner, a programmer exploits exist-
ing DSL and focuses on designing a graphical user interface.
Thus, he/she avoids constructing the meta-model and, in
line with this, the usage of the complex development frame-
works, like Eclipse. The modelling step is, here, substituted
with semiotic analysis, where each visual element, like icon
or link, is handled as a sign with its representation (object)
and meaning (implementation of the object). From these

so-called semiotics objects, the source code is then gener-
ated, which can be translated into object code using the
existing compiler/generator. The proposed approach was
tested by the development of EasyTime III VDSL for mea-
suring time during sports competitions and starting with
the concepts of an application domain obtained through do-
main analysis. These concepts serve as the basis for build-
ing EasyTime III graphical user interfaces on the Qt based
visual editor. The visual program (also user model) built
using this editor is then mapped into EasyTime DSL con-
structs. The result of this translation is the EasyTime DSL
source program. Translating this source program using the
LISA compiler/generator generates an object AM code for
the EasyTime measuring system. As a result, the developed
EasyTime III VDSL enables ordinary users (e.g., organis-
ers of sports competitions) to create programs for measuring
time application-domain visually. That is, instead of writing
the program in text editor, only ’point-and-click’ is needed
with the icons on the screen. With the proposed EasyTime
III, the programming of a measuring system within visual
environments is easier, faster, and more effective.

5. REFERENCES
[1] J. Blanchette and M. Summerfield. C++ GUI

programming with Qt 4. Prentice Hall PTR, 2006.

[2] D. Chandler. Semiotics: The Basics. Routledge, New
York, US, 2007.

[3] M. Dalheimer. Programming with QT: Writing
portable GUI applications on Unix and Win32.
O’Reilly Media, Incorporated, 2002.

[4] C. de Souza. The semiotic engineering of
human-computer interaction. MIT Press, Cambridge,
England, 2005.

[5] C. de Souza. Semiotic perspectives on interactive
languages for life on the screen. Journal of Visual
Languages & Computing, 24(3):218 – 221, 2013.

[6] K. Finkenzeller. RFID handbook: fundamentals and

StuCoSReC Proceedings of the 2016 3rd Student Computer Science Research Conference
Ljubljana, Slovenia, 12 October 31

applications in contactless smart cards, radio
frequency identification and near-field communication.
Wiley, 2010.

[7] I. Fister Jr. and I. Fister. Measuring time in sporting
competitions with the domain-specific language
Easytime. Electrotechnical review, 78(1–2):36–41, 2011.

[8] I. Fister Jr., I. Fister, M. Mernik, and J. Brest. Design
and implementation of domain-specific language
Easytime. Computer Languages, Systems &
Structures, 37(4):151–167, 2011.

[9] I. Fister Jr, T. Kosar, I. Fister, and M. Mernik.
Easytime++: A case study of incremental
domain-specific language development. Information
Technology And Control, 42(1):77–85, 2013.

[10] I. Fister Jr., M. Mernik, I. Fister, and D. Hrnčič.
Implementation of Easytime formal semantics using a
LISA compiler generator. Computer Science and
Information Systems, 9(3):1019–1044, 2012.

[11] I. Fister Jr., M. Mernik, I. Fister, and D. Hrnčič.
Implementation of the domain-specific language
Easytime using a LISA compiler generator. In
Computer Science and Information Systems
(FedCSIS), 2011 Federated Conference on, pages
801–808. IEEE, 2011.

[12] C. Peirce. Collected papers of charles sanders peirce.
volume 1–8, Cambridge, MA, 1931–1958. Harward
University Press.

[13] C. Peirce and V. Welby. Semiotic and significs: the
correspondence between Charles S. Peirce and Lady
Victoria Welby. UMI-books on demand. Indiana
University Press, 1977.

[14] S. Petschnig. 10 Jahre IRONMAN Triathlon Austria.
Meyer & Meyer Verlag, 2007.

[15] S. Rauter and M. Doupona Topič. Perspectives of the
sport-oriented public in slovenia on extreme sports.
Kinesiology, 43(1):82–90, 2011.

[16] F. Saussure. Course in General Linguistics.
Duckworth, 1976.

[17] E. Umberto. A theory of semiotics. Advances in
semiotics. Indiana University Press, 1976.

[18] University of Maribor. Lisa 2.2.
http://labraj.uni-mb.si/lisa/, 2013. Accessed 17
August 2016.

StuCoSReC Proceedings of the 2016 3rd Student Computer Science Research Conference
Ljubljana, Slovenia, 12 October 32

http://labraj.uni-mb.si/lisa/

