
Journal of Intelligent & Fuzzy Systems 32 (2017) 4319–4330
DOI:10.3233/JIFS-16963
IOS Press

4319

Modified binary cuckoo search
for association rule mining
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Abstract. This paper proposes a modified single-objective binary cuckoo search for association rule mining (MBCS-ARM).
The proposed algorithm includes a novel representations of individuals, which tackles the problems of large dimensionality
with an increasing number of attributes. The MBCS-ARM also supports the mining of rules, where intervals of attributes can
either be negative or positive. It uses an objective function composed of support and confidence weighted by two parameters,
which control the importance of each measure in the found rules. It is tested on eight publicly available databases, while also
compared to several single-objective evolutionary algorithms, and traditional algorithms, all found in the KEEL software
tool. The experiments show promising results of the MBCS-ARM, compared to other algorithms, by producing rules, which
are interesting, simple, and also easy to understand, which is of great importance in domains like medicine.
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1. Introduction

In the modern world, there is a huge amount of
data stored in real-world databases and this trend
continues to grow daily. There are different kinds of
databases such as medical, scientific, financial, and
marketing transaction data. Many of them hold large
amounts of data. Therefore, it has become an issue
how to effectively analyze these data and find the
interesting information hidden beneath. In the past
decade, the most successful method for solving this
kind of problems has been data mining, or to be
more specific: classification, clustering, regression,
and association rule mining [6].

Recently association rule mining has again gained
a lot of attention within the scientific community. This
is a popular method for discovering relations between
attributes in large databases. The goal of the method
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is to find those rules having the high level of inter-
estingness based on various measures. The pioneer
of association rule mining is Agrawal [1, 2] who pre-
sented the idea of discovering regularities between
products in large-scale transaction databases. An
Apriori algorithm was proposed, which has become
a standard approach in association rule mining. Nor-
mally, the algorithm selects the mined association
rules according to interestingness measures, like sup-
port and confidence identifying the most important
relationship of attributes in transaction databases.

Since the datasets are getting larger and more
complex [16], the traditional algorithms, like Apri-
ori, usually face problems of high computational
complexity when generating association rules. To
overcome this problem, researchers have proposed
new stochastic population-based nature-inspired
algorithms that treat the rule mining process as an
optimization process by applying search heuristics to
the underlying optimization problem.

The heuristics for association rule mining nor-
mally involve one or more interestingness measures
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depending on whether we approach the as a single-
objective or multi-objective problem. The measures
are disguised as fitness values guiding the optimiza-
tion process towards the more promising regions of
the search space, where more association rules of
better quality can be found.

Roughly speaking, we can divide the stochastic
nature-inspired algorithms into two large groups:
evolutionary algorithms (EAs) and swarm intel-
ligence (SI) based algorithms. Both families are
population-based algorithms, which generate new
solutions by applying appropriate variation operators
(e.g., crossover, mutation, etc.).

Many single and multi-objective methods have
been developed based on EAs, as follows:
genetic algorithms (GA) [11], genetic programming
(GP) [20], differential evolution (DE) [31]; and SI:
particle swarm optimization (PSO) [19], artificial bee
colony (ABC) [18], bat algorithm (BA) [33], and
cuckoo search (CS) [34].

Luna et al. [22] developed a GP based algorithm
for mining rare class association rules that cannot be
found using the traditional data mining algorithms.
Song et al. [30] discuss the effectiveness of a multi-
objective based binary BA, comparing it to single
objective binary PSO and BA, and the Apriori algo-
rithm. They conclude that the proposed algorithm is
feasible and highly effective. Yan et al. [32] designed
a genetic algorithm-based strategy for identifying
association rules without specifying the minimum
support. Confidence is used as a fitness function,
while the FP-Tree algorithm [12] is implemented to
improve the algorithm efficiency. In [10] Ghosh et
al. presented a Pareto based genetic algorithm for
extraction of interestingness rules on large market-
basket type dataset. They use three commonly used
measures to evaluate individuals: support, compre-
hensiveness, and interestingness. Other interesting
approaches are described in the following works [5,
7, 8, 14, 28].

Another multi-objective genetic algorithm is
described in [25], where the problem of dealing with
numerical data is tackled. Same rule measures are
used as in [10]. Heraguemi et al. [13] proposed a
bat algorithm, which produced better results when
compared to the FP-Growth algorithm [12]. Their
method relies on the minimum support and con-
fidence that must be supplied by the user. Sarath
et al. [28] proposed a binary particle swarm optimiza-
tion algorithm (BPSO), for operating on transactional
databases. With a product of support and confidence
as the fitness function, they evaluate their method

on three transactional datasets, and a real life bank
dataset. Based on the results, they conclude that
BPSO is a good alternative to Apriori and FP-growth
algorithms.

Algorithms based on binary encoding of indi-
viduals often suffer on the dimensionality of the
problem when confronted with datasets introduc-
ing attributes with many possible attribute values.
These methods are also mainly used for working
on transactional databases, while not appropriate
for dealing with datasets that include categorical or
even numerical values. EA or SI-based algorithms
also focus mainly on discovering positive association
rules, while ignoring the potential rules that involve
negation of attributes (an exception is the method
in [3]).

With this in mind, the paper proposes a modi-
fied binary cuckoo search for association rule mining
(MBCS-ARM) based on a binary representation of
individuals, where each individual encodes the cor-
responding association rule. Thus, all attributes in a
database are encoded as binary strings with additional
three control bits determining the presence/absence
of the attribute in the corresponding association rule,
when the attribute is part of antecedent/consequent
part of the rule, and when the attribute values are taken
from positive/negative domain of attribute values.
The MBCS-ARM was tested on eight publicly avail-
able datasets, where seven of them are available in the
KEEL tool [4] or the UCI machine learning reposi-
tory [21], and one dataset supplied by a professional
cyclist (produced for our research purpose) [17]. The
performance of the proposed algorithm was com-
pared to the four single-objective EAs for association
rule mining, and three traditional algorithms for solv-
ing the same problem.

In summary, the proposed MBCS-ARM algorithm
brings the following two key novelties: (1) the novel
(i.e., binary) representation of individuals, and (2) the
application of a single-objective modified binary CS
algorithm to association rule mining.

The remainder of the paper is organized as fol-
lows. In Section 2, a formal definition of association
rule mining is given, along with some descrip-
tions of traditional algorithms. Section 3 presents
the original and the proposed modified binary CS
algorithms. Section 4 deals with describing the exper-
imental environment (i.e. parameter settings, and
used databases), and a brief review of EAs used for
association rule mining. In Section 5, the results are
depicted, while in Section 6, the paper is concluded
outlining the directions for the future work.
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2. Association rule mining

Mathematically, the association rule mining is
defined as follows. Let us suppose a set of attributes
I = {a1, . . . , am} called items and a set of transac-
tions D = {t1, . . . , tn} called a dataset, where each
transaction has a unique identification and contains
a subset of items ti ⊂ I called an item-set, and m

denotes the number of items and n the number of
transactions. Then, the association rule is an impli-
cation X → Y , where X and Y are two item-sets and
it holds X ∩ Y = ∅. The criteria to identify the most
important relationships in the specific rule are esti-
mated according to two interestingness measures as
follows:

1. Minimum support that is defined as proportion
of transactions containing X and Y , and the total
number of transactions in database, as follows:

support(X → Y ) = |{ti|ti ∈ X ∧ ti ∈ Y}|
∑n

i=0 ti
,

(1)
2. Minimum confidence that is defined as propor-

tion of transactions that contains X also contains
Y , as follows:

confidence(X → Y ) = support(X ∪ Y )

support(X)
(2)

There are many traditional association rule min-
ing algorithms, but the most used are Apriori,
Eclat, and FP-Growth. Therefore, a brief descrip-
tion of the mentioned algorithms follows in the next
sections.

2.1. Apriori algorithm

The Apriori algorithm proposed by Agrawal [2] is
the most representative association rule mining algo-
rithm. It works in two steps, where the first step is
dedicated for generating the most frequently arisen
item-sets in a transaction database. They are selected
from all possible item-sets using the parameter min-
imum support as defined by Equation (1). After the
most frequently arisen item-sets are selected, those
occurring less than the specified minimum support
are removed. From these item-sets, the rules are
selected in the second step using the parameter min-
imum confidence as defined by Equation (2). Thus,
all rules having the lower confidence than the one
provided are removed.

2.2. Eclat

First introduced by Zaki et al. [35] in 1997, the
Eclat algorithm finds the frequently arisen item-sets
by a depth first search on the subset lattice and deter-
mines the support of these item-sets by intersecting
transaction lists. It is suitable for parallel processing
with local enhancing properties. For more informa-
tion readers are referred to [35].

2.3. FP-Growth

FP-Growth algorithm was proposed by Han
et al. [12] in 2000 with an intention to overcome the
bottlenecks of Apriori. It uses an extended prefix-
tree structure for storing crucial information about
frequently arisen patterns found in the transaction
database. All item-sets are generated by only two
passes over the whole database. More information
can be found in [12].

3. Cuckoo search algorithm for association
rule mining

3.1. Original cuckoo search

Cuckoo search (CS) is a stochastic population-
based nature-inspired algorithm that has been
introduced by Yang and Deb in 2009. CS belongs
to the SI-based algorithms [9], and it is inspired by
natural behavior of some cuckoo species and their
brood parasitism. Typically, some cuckoo species lay
their eggs in the nests of other birds in order to
care for them as if they were their own. To trap the
behavior of cuckoos in nature on the one hand and
to adapt it to be suitable for using as the computer
algorithm on the other hand, authors idealized three
rules [34]:

– Each cuckoo lays one egg at a time, and dumps
it in a randomly chosen nest.

– The best nests with high-quality eggs will be
carried over to the next generations.

– The number of available host nests is fixed and
the egg laid by a cuckoo may be discovered by
the host bird with a probability pa ∈ (0, 1). In
this case, the host bird can either get rid of the
egg, or simply abandon the nest and build a com-
pletely new nest.

Initially, a solution corresponding to a cuckoo egg
placed inside the nest is randomly generated within
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the search space. Mathematically, the position of a
nest is defined as:

x(t)
i = {x(t)

i,j}, for i = 1, . . . , NP and j = 1, . . . , D,

(3)
where NP denotes the number of cuckoo nests, D the
dimensionality of the problem, and t the generation
number. In each iteration, the nest is updated using
the the following equation:

x
(t+1)
i = x

(t)
i + αL(s, λ), (4)

where

L(s, λ) = λ�(λ) sin(πλ/2)

π

1

s1+λ
, (s 
 s0 > 0).

(5)
Equation (4) describes the local random walk that

is mainly intended for exploitation of the current solu-
tions. This random walk is governed by Lévy flight
distribution expressed as L(s, λ) and scaled by the
scaling factor α > 0 of the step size s.

The pseudocode of the CS is presented in
Algorithm 1 (see Fig. 1 for the flowchart).

3.2. Modified binary cuckoo search algorithm

Since the CS was applied to association rule
mining, it seems that a binary representation of
solutions is more promising to achieve the better
results. In line with this, the modified binary CS
(MBCS) is proposed, where the solution is repre-
sented as a n dimensional boolean lattice, in which
the solutions are updated across the corners of a
hypercube [27].

In order to prepare the MBCS for association rule
mining, the following five steps need to be preformed:

– identifying an attribute domain,
– rule representation,
– candidate solution generation,
– fitness evaluation,
– association rule mining using MBCS.

In the remainder of the paper the mentioned steps
are discussed in detail.

3.2.1. Identifying an attribute domain
Attributes in MBCS are represented as binary

strings. The size of the strings is determined with the
number of attributes. It is well known that the maxi-
mum 2n different attributes can be represented using
a binary string of length n.

In order to identify the number of attributes,
an analysis of a transaction database D needs

Algorithm 1 Cuckoo search algorithm
Input: Population of nests xi = (xi,1, . . . , xi,D)T for i = 1 . . . NP,
MAX FE.
Output: The best solution xbest and its corresponding value fmin =
min(f (x)).

1: generate initial host nest locations;
2: FE = 0;
3: while termination condition not meet do
4: for i = 1 to NP do
5: ui = generate new solution(xi);
6: ftrial = evaluate the new solution(ui);
7: FE = FE + 1;
8: j = �rand(0, 1) ∗ NP + 1�;
9: if ftrial < fj then

10: xj = ui; fj = ftrial ; // replace the j-th random
selected solution

11: end if
12: if rand(0, 1) < pa then
13: init nest(xworst );
14: end if
15: if ftrial < fmin then
16: xbest = ui; fmin = ftrial ; // replace the global best

solution
17: end if
18: end for
19: end while

Algorithm 2 Generating new solutions
Input: A solution x(t) = (xi,1, . . . , xi,D)T .
Output: Binary vector x(t+1).

1: for i = 1 to D do
2: ui = x

(t)
i + αL(s, λ)

3: Sb = 1
1+e(−ui )

4: if rand(0, 1) < Sb then
5: x

(t+1)
i = 1

6: else
7: x

(t+1)
i = 0

8: end if
9: end for

to be performed. As a result, sets of attribute
values ai = {αi,1, . . . , αi,mi} are defined after per-
forming the analysis that contain the unique attribute
values αi,j for i = 1, . . . , m and j = 1, . . . , mi,
where m is the number of attributes and mi the
number of attribute values for attribute ai. Let
us notice that data in a database can either be
categorical, numerical or transactional. However,
if data are continuous, a discretization must be
performed.

3.2.2. Rule representation
As found in literature, there are two well estab-

lished encodings for representing association rules in
EA domain. The first is the Pittsburgh approach [15],
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Fig. 1. Flowchart of the CS algorithm.

where each individual represents a set of associa-
tion rules, while by the second so called Michigan
approach [15], each individual represents the sep-
arate association rule. The main downfall of both
approaches is that the search space of the EA grows
quite big by increasing the number of attributes as
well as the number of attribute values. In this work
we present a novel representation of individuals for
association rule mining, which tries to overcome this
problem.

Each individual represents a separate rule as in the
Michigan encoding approach, where each attribute of
the rule is encoded with three control bits as follows:

– the first control bit indicates presence/absence
of this attribute in the corresponding association
rule,

– the second control bit denotes, whether the
attribute belongs to the antecedent (bit one) or
the consequent of the rule (bit zero),

– the third control bit defines, whether the attribute
values are taken from a positive/negative
attribute domain, and

– the actual value of the corresponding attribute.

It is obvious that, when the first control bit of an
attribute is set then it is present in the correspond-

ing association rule. Contrary, when this bit is not set
means that the attribute does not belong to the rule.
The similar is true for the second bit. Third control
bit is reserved for defining the positive or negative
attribute domain, where the positive domain means,
that the actual value of the attribute is used and neg-
ative whether all other values except the actual value
are used. Let us assume an attribute a = {1, 2, 3}.
Then, the positive domain for an attribute value {2}
is the same value, i.e., DP

a = {2}, while the negative
domain is expressed as DN

a = {1, 3}.
Finally, the attribute value is represented as a

binary value, where the number of bits depends on
the minimum value of bits mi required to represent
the maximum number of different attribute values
2mi for an attribute ai. However, when using this
individual representation, a problem of redundant
values can occur when an invalid attribute value is
represented.

For instance, the attribute a2 has five different
attribute values. That means that it needs three bits
for representing the attribute values, in other words
{0, 1, 2, 3, 4, 5, 6, 7}. Consequently, only first five
attribute values are needed for representing attribute
values, while other three values {5, 6, 7} are redun-
dant. However, these redundant values are simply
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Fig. 2. Representation of the i-th individual, where each attribute
is presented using 3 control bits, and the actual attribute value. For
example the control bits of attribute a1 are 1-0-1, which means that
the attribute is present in the rule, it is part of the antecedent, and
the interval of the attribute is negative. The whole example can
be interpreted as follows: the first and last attributes are present
in the rule and are a part of the antecedents, while the second
attribute is part of the consequent. ((a1 /= 2) ∧ (am = 4) ∧ . . . →
(a2 = 3) ∧ . . .).

fixed by reinitializing the invalid value to the correct
domain in the study.

Each attribute is thus encoded with as little infor-
mation as possible. Figure 2 depicts this process for
easier understanding.

3.2.3. Candidate solution generation
The candidate solution is generated by the origi-

nal CS according to Equation (4) and this enters in
the selection process with randomly selected solution
in the current population. If the candidate solution is
better than the existing one, it becomes the new pop-
ulation member. However, the generation in MBCS
slightly differs from those in the original CS.

The generation of candidate solution in MBCS
algorithm is accomplished using Algorithm 2, where
the candidate solution is generated using the same
Equation (4) as the original CS. However, this equa-
tion is conducted on the binary vector in the case
of MBCS, where only two values 0/1 are allowed.
This values are preserved by calculating the threshold
using the following function [27]:

Sb = 1

1 + e(−ui)
, (6)

that determines the corresponding value of the
candidate solution randomly. The parameter ui in
Equation (6) is calculated according to the Algo-
rithm 2 (line 2).

3.2.4. Fitness evaluation
Since the proposed method for association rule

mining is applied using the MBCS algorithm, a metric
for identifying the quality of rules (i.e. a fitness func-
tion) must be determined. There are several different
fitness functions applied in the literature, varying
from simple to very complex. Our method relies on
the already mentioned measures of support (Equa-
tion (1)) and confidence (Equation (2)) for the mined
association rule X → Y as follows [13]:

f (x) = β ∗ confidence(X→Y ) + γ ∗ support(X→Y )

β + γ
,

(7)

Both confidence and support are weighted by fac-
tors β and γ , which control the importance of both
measures. Increasing the value β, would result in the
algorithm finding rules with an increased confidence.
In contrary, increasing the value γ would result in
rules favoring the increased support. Depending on
the application of rule mining, the user can control
the importance of both measures.

3.2.5. Association rule mining using MBCS
A detailed explanation of the proposed algorithm

for association rule mining (MBSC-ARM) is given in
this subsection. As described in the beginning of Sec-
tion 3.2, the algorithm consists of two parts. In the first
part, the data are mapped from real-coded elements of
the CS to binary encoded strings of the MBSC, while
in the second part the MBCS is employed for finding
the optimal association rules. The pseudo-code of the
proposed algorithm can be seen in Algorithm 3.

Algorithm 3 Association rule mining using BCS
Input: maximum number of restarts K
Output: archive of best rules R

1: k = 0
2: R = {}
3: while k < K do
4: rule = BCS()
5: if rule /⊂ R then
6: R = R ∪ rule

7: k = 0
8: else
9: k = k + 1

10: end if
11: end while

The algorithm is implemented in such a way, that
when the termination condition is reached by the
algorithm, the best association rule found is put into
an archive of solutions. If the same solution is already
in the archive, a counter k is increased. When this
counter reaches the maximum number of K, the
archive becomes the final result of different solutions.
The K parameter is supplied by the user.

4. Experimental environment

This section describes the experiment settings, the
used databases and PC configuration on which the
experiments were conducted.
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Table 1
Parameters of BCS for association rule mining

Parameter Value

NP 30
G 200
pa 0.25
β 1
γ 1
K dataset dependent

4.1. Parameter settings

During testing the parameters of MBCS-ARM
were as described in Table 1. As can be seen from
Table 1, NP denotes the population size, G the maxi-
mum number of generations, and pa is the switching
probability. The parameters β and γ are used to weigh
the importance of either support or confidence, and
lastly K is the number of restarts in a row, which
is dataset dependent, i.e. the bigger datasets with
more attributes require a smaller number of restarts,
because to many rules would be produced otherwise.

4.2. PC configuration

All runs were made on a desktop computer, with
the following configuration:

– Processor: Intel(R) Core(TM) i5-4570 CPU @
3.20 GHz,

– RAM: 16 GB,
– Operating system: Linux Mint 17 Qiana.

The MBCS-ARM was implemented in the C++
programming language.

4.3. Test databases

The datasets listed in Table 2 were used for eval-
uating the performance of the MBCS-ARM. The
characteristics of each database is also presented
in terms of the number of transactions, attributes
and attribute types. The latter can be one of the
following: categorical, integer, and real. All quan-
titative attributes have been partitioned into four
categories (as suggested by [3]), by equal frequency
sampling.

4.4. Comparing algorithms

In the experimental part of this work, our algorithm
was compared to all single-objective evolutionary,
and three traditional association rule mining algo-

Table 2
Datasets used in the study. The abbreviations for attribute types

are: C (categorical), I (integer), R (real)

Dataset No. of instances Attributes Attribute type (C/I/R)

Basketball 95 5 0/2/3
Car 1728 7 7/0/0
Cyclist 100 8 8/0/0
House 22784 17 0/7/10
Nursery 12960 9 9/0/0
Quake 2178 4 0/1/3
Stock 950 10 0/0/10
Wine 178 14 0/3/11

rithms found in the KEEL software tool [4]. The
evolutionary algorithms are:

– Alatasetal [3],
– EARMGA [32],
– GENAR [23], and
– GAR [24],

while the traditional algorithms are:

– Apriori [2],
– Eclat [35], and
– FP-Growth [12].

All listed evolutionary algorithms (Alatasetal,
EARMGA, GENAR, and GAR) are GAs. The
Alatasetal algorithm is able to mine both positive and
negative intervals for attribute values, without speci-
fying the minimum support and confidence. Another
interesting fact is that the initialization is not done
randomly, but close to final solutions. The rules are
obtained from the last generation of a single run.
The EARMGA is also independent of minimum sup-
port and confidence. It uses a generalized FP-Tree
to improve the algorithm efficiency. Another charac-
teristic of this algorithm is the specification of rule
length, which must be supplied by the user. GENAR
is able to find rules in numeric datasets by incorpo-
rating the lower and upper bounds of each attribute
in the solution. Rule length is always the same as the
number of attributes, where the last attribute forms
the consequent. The used objective function penal-
izes those solutions, which cover the same records
in the dataset. The GAR algorithm is an extension
of GENAR, where frequent item sets are firstly dis-
covered, on which the rules are later produced. Like
GENAR this algorithm also searches for rules in
numeric dataset with no need for discretization.

All traditional algorithms have previously been
described in Section 2.

Let us notice, that all algorithms were run with
their default parameters, as set in the KEEL tool. Each
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algorithm in the comparison was executed 10 times,
so the reported results are an average of those 10 runs.

5. Results

In this section, the results of the MBCS-ARM are
analyzed and compared to the algorithms in the KEEL
tool. Let us notice that two variants of the MBCS-
ARM are reported, denoted as MBCS-ARM± and
MBCS-ARM+, where the first includes the possi-
bility of mining positive an negative intervals of a
attribute in association rules, while the latter searches
only for positive intervals.

The following experiments have been performed:

– comparison of MBCS-ARM± and MBCS-
ARM+,

– comparison of the best MBCS-ARM variant
with evolutionary algorithms in the KEEL tool,

– comparison of the best MBCS-ARM variant
with traditional algorithms.

Firstly, both variants of the proposed MBCS-ARM
will be compared against each other, then the better
one will be compared to the evolutionary algorithms,
which were presented in Section 4. The comparison
will be made on the basis of the following measures:

number of rules produced, support, confidence, cov-
erage (defined as the support of the antecedent), and
antecedent length. Secondly the best MBCS-ARM
variant will also be compared to traditional associa-
tion rule mining algorithms, also using the same mea-
sures as with the EAs. Then lastly some interesting
rules will be presented, obtained with the MBCS-
ARM. All reported values are averages of 10 runs.

All experiments are discussed in detail in the fol-
lowing subsections.

5.1. Comparison of MBCS-ARM± and
MBCS-ARM+

Let us analyze both variants of the MBCS-ARM
from Table 3. The following conclusions can be
made: the MBCS-ARM+ almost always produces
more rules than MBCS-ARM±, and these rules are
longer, based on the average number of antecedents.
Longer association rules are often harder to under-
stand than those of shorter length. It is also obvious
that the MBCS-ARM+ produces rules, which in gen-
eral have lower support than MBCS-ARM±, which
implies those rules may be uninteresting. Also the
coverage of the records in the database is way lower
in all cases for the MBCS-ARM+, so it is obvious
that the MBCS-ARM± is the better performing algo-

Table 3
Comparison MBCS-ARM± and MBCS-ARM+. The reported results are averages of 10 individuals runs

Algorithm #Rules avgSupp avgConf coverage(%) avgAntLen

Basketball
MBCS-ARM± 9.8 0.672 0.891 95.21 1.02
MBCS-ARM+ 17.9 0.039 1.000 39.375 2.644

Car
MBCS-ARM± 14.9 0.720 0.967 96.25 1
MBCS-ARM+ 24.5 0.118 0.990 72.911 1.895

Cyclist
MBCS-ARM± 32 0.453 0.882 100 1.35
MBCS-ARM+ 12.5 0.124 0.985 51.200 2.174

House
MBCS-ARM± 357.7 0.355 0.824 99.99 2.91
MBCS-ARM+ 1545.2 0.002 0.999 86.451 6.399

Nursery
MBCS-ARM± 85 0.654 0.961 100 1.28
MBCS-ARM+ 148.2 0.055 1.000 41.671 2.773

Quake
MBCS-ARM± 3.2 0.630 0.841 56.97 1
MBCS-ARM+ 8.2 0.002 0.993 2.273 2.978

Stock
MBCS-ARM± 326.2 0.598 0.893 100 1.55
MBCS-ARM+ 533.3 0.058 0.990 99.811 2.853

Wine
MBCS-ARM± 114.5 0.496 0.833 99.83 1.70
MBCS-ARM+ 136.4 0.030 0.996 91.124 3.344
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rithm, and is going to be the base for comparing to
other EAs in this study.

5.2. Comparison of MBCS-ARM± with
Evolutionary algorithms

A similar analysis can be made when comparing
the MBCS-ARM± to other algorithms. The results

of this experiment are collated in Table 4. The pro-
posed algorithm obtains higher support averages than
others on 5 datasets, while the confidence obtains
fairly good results. The balance between these two
measures can be easily regulated by the β and γ

parameters, which weigh the values of support and
confidence in the objective value. Although no atten-
tion was payed to those parameters, good confidence

Table 4
Comparison with single-objective evolutionary algorithms. The reported results are averages of 10 individuals runs

Algorithm #Rules avgSupp avgConf coverage(%) avgAntLen

Basketball
Alatasetal-A 11.7 0.977 0.999 99.89 3.33
EARMGA-A 100 0.314 1.000 100 2.00
GAR-A 1.8 0.680 0.793 87.09 1.80
GENAR-A 30 0.296 0.969 90.32 5.00
MBCS-ARM± 9.8 0.672 0.891 95.21 1.02

Car
Alatasetal-A 89 0.027 1.000 85.07 5.27
EARMGA-A 100 0.376 1.000 100 2
GAR-A – – – – –
GENAR-A – – – – –
MBCS-ARM± 14.9 0.720 0.967 96.25 1

Cyclist
Alatasetal-A 88.5 0.154 1.000 82.93 5.06
EARMGA-A 100 0.514 1.000 100 2
GAR-A – – – – –
GENAR-A 30 0.020 0.970 29.81 8
MBCS-ARM± 32 0.453 0.882 100 1.35

House
Alatasetal-A 37.5 0.068 0.399 37.21 4.04
EARMGA-A 77 0.357 1.000 100 2
GAR-A 110.1 0.766 0.900 99.99 2.02
GENAR-A 30 0.434 0.990 87.39 17
MBCS-ARM± 357.7 0.355 0.824 99.99 2.91

Nursery
Alatasetal-A 57.5 0.026 0.700 58.98 4.10
EARMGA-A 98.3 0.413 1.000 100 2
GAR-A – – – – –
GENAR-A – – – – –
MBCS-ARM± 85 0.654 0.961 100 1.28

Quake
Alatasetal-A 3.1 0.496 0.787 67.96 1.84
EARMGA-A 100 0.327 1.000 100 2
GAR-A 1 0.388 0.766 46.15 1.90
GENAR-A 30 0.550 0.950 81.84 4
MBCS-ARM± 3.2 0.630 0.841 56.97 1

Stock
Alatasetal-A 25.7 0.265 0.989 69.78 3.47
EARMGA-A 100 0.321 1.000 100 2
GAR-A 1.7 0.423 0.792 57.15 1.8
GENAR-A 30 0.292 0.922 87.35 10
MBCS-ARM± 326.2 0.598 0.893 100 1.55

Wine
Alatasetal-A 94.4 0.374 1.000 68.65 7.48
EARMGA-A 100 0.384 1.000 100 2
GAR-A 7 0.219 0.928 80.178 2.62
GENAR-A 30 0.010 1.000 16.95 14
MBCS-ARM± 114.5 0.496 0.833 99.83 1.70
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was obtained on all datasets. When comparing the
coverage of records, the EARMGA was best with
100% on all datasets, but support is low on some
datasets. On the other hand, the lowest coverage of
records was obtained by GENAR, but due to the fact
that the algorithm involves all attributes in rule gen-
eration. It is also worth noting that both GAR and
GENAR had trouble finding any rules at all on some
datasets. The rules mined by Alatasetal are the clos-
est to MBCS-ARM± in quality based on results in
Table 4, since both algorithms include the possibility
for finding positive and negative intervals of attributes
in association rules. Let us emphasize that the rules
found by the proposed algorithm are short in length,
thus ensuring an easier understanding from the user’s
perspective.

5.3. Comparison of MBCS-ARM± with
traditional algorithms

In this section the proposed algorithm will be com-
pared with three traditional association rule mining
algorithms, all presented in Section 2. A mandatory
discretization of datasets, which include quantita-
tive attributes was performed in order to effectively
mine association rules with traditional algorithms.
The used discretization was equal frequency sam-

pling, which introduces new attributes with intervals.
Many other discretization algorithms exist in the lit-
erature, but they often require some knowledge of the
data being processed. To keep things simple the men-
tioned sampling into four intervals was used for each
quantitative attribute (as used in [3]).

The results of the last experiment are collated in
Table 5. The proposed MBCS-ARM± achieved the
highest support for all datasets, with a high value
of confidence. The reason lies in the possibility
of finding negative attribute intervals. The obtained
rules also cover the datasets better in 7/8 cases, and
these rules are on average shorter, thus easier to
understand.

5.4. Examples of mined rules

In this section we present and analyze some rules
mined by the MBCS-ARM±. Table 6 shows some
interesting rules obtained from the Car, Quake, and
Stock datasets. All rules have their interesting mea-
sures reported alongside.

The rules in Table 6 can be interpreted as follows:

– Car: if the car safety is proven to be low, then the
car is not accepted very good by the consumers
(it is tend to sell less).

Table 5
Comparison with traditional algorithms (Apriori, Eclat, and FP-Growth)

Algorithm #Rules avgSupp avgConf coverage avgAntLen

Basketball
Apriori, Eclat, FP-Growth 4 0.15 0.87 33.34 2.75
BCSRM± 9.8 0.672 0.891 95.21 1.02

Car
Apriori, Eclat, FP-Growth 15 0.16 0.98 66.65 2.74
BCSRM± 14.9 0.720 0.967 96.25 1

Cyclist
Apriori, Eclat, FP-Growth 60 0.12 0.89 94.95 3.46
BCSRM± 32 0.453 0.882 100 1.35

House
Apriori, Eclat, FP-Growth 207 0.14 0.92 92.55 3.64
BCSRM± 357.7 0.355 0.824 99.99 2.91

Nursery
Apriori, Eclat, FP-Growth 24 0.14 1.0 33.34 2.92
BCSRM± 85 0.654 0.961 100 1.28

Quake
Apriori, Eclat, FP-Growth 18 0.25 0.91 90.54 2.55
BCSRM± 3.2 0.630 0.841 56.97 1

Stock
Apriori, Eclat, FP-Growth 129 0.14 0.92 95.9 3.23
BCSRM± 326.2 0.598 0.893 100 1.55

Wine
Apriori, Eclat, FP-Growth 244 0.14 0.92 98.31 3.41
BCSRM± 114.5 0.496 0.833 99.83 1.70
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Table 6
Some examples of interesting rules found by the MBCS-ARM±

Dataset Rule Support Confidence Coverage

Car if (safety is low) then (acceptability is not v-good) 0.333 1 33.3%
Quake if (longitude is not [−180.0, −67.8)) then (richter is not [6.2, 6.9]) 0.625 0.834 75%
Stock if (company3 is [12.8, 16.2)) then (company2 is not [49.1, 53.4)) 0.268 1 26.8%

– Quake: if the longitude is not in the range
[−180.0,−67.8), then the Richter scale of the
quake is not in the range [6.2,6.9].

– Stock: if the stock price of company3 is between
12.8 and 16.2, then the stock price of company2
is not between 49.1 and 53.4.

6. Conclusion

A single-objective binary cuckoo search using a
novel individual representation was proposed in this
paper. The representation tackles the problems of
large dimensionality, while also support the mining
of both positive and negative intervals of attributes in
association rules. The proposed MBCS-ARM algo-
rithm produces rules, which are interesting, simple,
easy to understand, and offer good coverage of the
dataset. It uses an objective function composed of
the support and confidence, weighted by two parame-
ters. These parameters control the importance of each
measure, and give the user the control for finding rules
with either greater support or confidence.

MBCS-ARM was tested on many publicly avail-
able databases, and compared to several evolutionary
and traditional algorithms, all available in the KEEL
tool. The experiments show promising result com-
pared to other algorithms, based on the interesting
rules, and also provide rules which include a lower
number of attributes.

For future work we would like to test the proposed
method on larger databases (with millions of records),
perform a large scale study of parameters of the algo-
rithm, while introducing new objective functions.
There is also an interesting growth in hybridizing
SI algorithms [26], so a step in that direction could
definitely improve the results.
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