Interplay of Two Bat Algorithm Robotic
Swarms in Non-Cooperative Target Point Search

Patricia Sudrez!, Akemi Gélvez'2, Iztok Fister?, Iztok Fister Jr.3, Eneko
Osaba?, Javier Del Ser®>¢, Andrés Iglesias® >

'University of Cantabria, Avenida de los Castros s/n, 39005, Santander, Spain
2Toho University, 2-2-1 Miyama, 274-8510, Funabashi, Japan
3University of Maribor, Smetanova, Maribor, Slovenia
ATECNALIA, Derio, Spain
SUniversity of the Basque Country (UPV/EHU), Bilbao, Spain
5Basque Center for Applied Mathematics (BCAM), Bilbao, Spain
fCorresponding Author: iglesias@unican.es
http://personales.unican.es/iglesias

Abstract. In this paper, we analyze the interplay of two robotic swarms
applied to solve a target point search in a non-cooperative mode. In par-
ticular, we consider the case of two identical robotic swarms deployed
within the same environment to perform dynamic exploration seeking
for two different unknown target points. It is assumed that the environ-
ment is unknown and completely dark, so no vision sensors can be used.
Our work is based on a robotic swarm approach recently reported in
the literature. In that approach, the robotic units are driven by a popu-
lar swarm intelligence technique called bat algorithm. This technique is
based on echolocation with ultrasounds, so it is particularly well suited
for our problem. The paper discusses the main findings of our computa-
tional experiments through three illustrative videos of single executions.

Keywords: swarm intelligence, swarm robotics, bat algorithm, multiple
swarms, non-cooperative search

1 Introduction

A recent and very interesting trend in swarm robotics (SR) is the use of multiple
robotic swarms operating simultaneously within the same environment [1]. The
most common case in the literature and real-life applications is the cooperative
mode, defined by the cooperation among swarms to achieve a common goal.
In contrast, little attention has been given so far in the literature to the non-
cooperative case, where each swarm tries to solve its own goals with little (or
none at all) consideration to any other factor external to the swarm (e.g., other
swarms’ goals). Note however that this non-cooperative case also arises in some
practical applications. Aimed at filling this gap, in this work we focus on the
behavioral pattern of robotic swarms under this non-cooperative regime.

In particular, in this work we consider the case of two robotic swarms S
and Sy comprised by a set of p and v robotic units &1 = {ri}izl,___,u, Sy =

2 P. Sudrez et al.

{ré }j=17~~~,1/’ respectively. For simplicity, we can assume that y = v and that all
robotic units are identical, i.e., rt = rg, Vi, 7. These robotic units are deployed
within the same environment £ — R? to perform dynamic exploration. We
assume that the geometry of €2 is unknown to the robots and completely dark,
so any vision sensor becomes useless to the robots. The goal of each swarm Sy, is
find a static target point ®; (k = 1,2), placed in a certain (unknown) location
of the environment. We assume that ||[®;—®2|| > J for a certain threshold value
6 > 0, meaning that both target points are not very close to each other so as
to broaden the spectrum of possible interactions between the swarms. Although
the environment is a 3D world, we consider the case of mobile walking robots
moving on a two-dimensional map M = Q|.—o.

Regarding the artificial intelligence method, there are several possibilities to
built a robotic swarm under these constraints. In this paper, we focus on a pow-
erful bio-inspired swarm intelligence approach called bat algorithm. This choice
is very natural as this algorithm is based on the echolocation behavior of some
species of microbats living in dark environments such as caves, thus meeting our
previous assumptions. This algorithm has shown to be very effective to address
difficult continuous optimization problems involving a large number of variables
[2,3,7], including the efficient navigation in dynamic indoor environments [4,
5]. A recent paper describes a physical and computational implementation of a
swarm of bat algorithm-based robotic units. Such implementation is fully spe-
cialized in the sense that all components of the robots are designed and fully
optimized to replicate the most relevant features of the real microbats and the
bat algorithm as faithfully as possible [6]. This work is based on that approach.
In fact, the physical robots, shown in Figure 1, are already built according to
the implementation described in [6]. However, since in this paper we are inter-
ested in the computational features, our description will be based on computer
simulations exclusively. To this aim, the physical robots are replaced by their
digital models, shown in Fig. 2.

The structure of this paper is as follows: in Sect. 2 we provide a gentle
overview about the bat algorithm. Our SR approach for non-cooperative target
point search is described in Sect. 3 and illustrated using two independent robotic
swarms in Sect. 4. The paper closes with the conclusions and some plans for
future work in the field.

2 The Bat Algorithm

The bat algorithm is a bio-inspired swarm intelligence algorithm originally pro-
posed by Xin-She Yang in 2010 to solve optimization problems [7-9]. The algo-
rithm is based on the echolocation behavior of bats. The author focused particu-
larly on microbats, as they use a type of sonar called echolocation, with varying
pulse rates of emission and loudness, to detect prey, avoid obstacles, and locate
their roosting crevices in the dark. The interested reader is referred to the gen-
eral paper in [10] for a comprehensive, updated review of the bat algorithm, its
variants and applications.

Interplay of Two Robotic Swarms in Non-Cooperative Target Point Search 3

Fig. 2. Graphical models of the robots in Figure 1.

2.1 Basic rules
The idealization of the echolocation of microbats can be summarized as follows:

1. Bats use echolocation to sense distance and distinguish between food, prey
and background barriers.

2. Each virtual bat flies randomly with a velocity v; at position (solution)
x; with a fixed frequency fn, varying wavelength A and loudness Ag to
search for prey. As it searches and finds its prey, it changes wavelength (or
frequency) of their emitted pulses and adjust the rate of pulse emission 7,
depending on the proximity of the target.

3. Tt is assumed that the loudness will vary from an (initially large and positive)
value Ay to a minimum constant value A,,;.,.

In order to apply the bat algorithm for optimization problems more efficiently,
some additional assumptions are strongly advisable. In general, we assume that
the frequency f evolves on a bounded interval [fiin, fmaz]- This means that the
wavelength A is also bounded, because f and A are related to each other by the

4 P. Sudrez et al.

Require: (Initial Parameters)
Population size: P
Maximum number of generations: Gmaqx
Loudness: A
Pulse rate: r
Maximum frequency: fmaz
Dimension of the problem: d

Objective function: ¢(x), with x = (z1,...,2zq)"
Random number: § € U(0, 1)

1l: g0

2: Initialize the bat population x; and v;, (i =1,...,n)

3: Define pulse frequency f; at x;

4: Initialize pulse rates r; and loudness A;

5: while g < Gpaz do

6: fori=1to P do

T Generate new solutions by adjusting frequency,

8: and updating velocities and locations //eqns. (1)-(3)

9: if 6 > r; then

10: sbest 9 //select the best current solution

11: 1s*t « Is? //generate a local solution around sb***

12: end if

13: Generate a new solution by local random walk

14: if 0 < A; and ¢(xi) < $(x*) then

15: Accept new solutions

16: Increase r; and decrease A;

17: end if

18: end for

190 geg+1

20: end while

21: Rank the bats and find current best x*
22: return x*

Algorithm 1: Bat algorithm pseudocode

fact that the product A.f is constant. For practical reasons, it is also convenient
that the largest wavelength is chosen such that it is comparable to the size of the
domain of interest (the search space, for optimization problems). For simplicity,
we can assume that frin = 0, so f € [0, fmaz]- The rate of pulse can simply
be in the range r € [0,1], where 0 means no pulses at all, and 1 means the
maximum rate of pulse emission. With these idealized rules indicated above, the
basic pseudo-code of the bat algorithm is shown in Algorithm 1. It is described
in next paragraphs.

2.2 The algorithm

Basically, the algorithm considers an initial population of P individuals (bats).
Each bat, representing a potential solution of the optimization problem, has a

Interplay of Two Robotic Swarms in Non-Cooperative Target Point Search 5

location x; and velocity v;. The algorithm initializes these variables (lines 1-2)
with random values within the search space. Then, the pulse frequency, pulse
rate, and loudness are computed for each individual bat (lines 3-4). Then, the
swarm evolves in a discrete way over generations (line 5), like time instances
(line 19) until the maximum number of generations, G4z, is reached (line 20).
For each generation g and each bat (line 6), new frequency, location and velocity
are computed (lines 7-8) according to the following evolution equations:

fzg = 'rgnn + ﬁ(gmm - 'rgnn) (1)
vi = vf_l + [xf_1 —x*] f7 (2)
x{ =xI 4! (3)

where 8 € [0,1] follows the random uniform distribution, and x* represents
the current global best location (solution), which is obtained through evaluation
of the objective function at all bats and ranking of their fitness values. The
superscript (.)9 is used to denote the current generation g.

The best current solution and a local solution around it are probabilistically
selected according to some given criteria (lines 8-11). Then, search is intensified
by a local random walk (line 12). For this local search, once a solution is selected
among the current best solutions, it is perturbed locally through a random walk
of the form:

Xpew = Xold eAY (4)

where € is a random number with uniform distribution on the interval [—1,1]
and A9 =< A? >, is the average loudness of all the bats at generation g.

If the new solution achieved is better than the previous best one, it is proba-
bilistically accepted depending on the value of the loudness. In that case, the
algorithm increases the pulse rate and decreases the loudness (lines 13-16). This
process is repeated for the given number of generations. In general, the loudness
decreases once a bat finds its prey (in our analogy, once a new best solution is
found), while the rate of pulse emission decreases. For simplicity, the following
values are commonly used: Ay = 1 and A,,;, = 0, assuming that this latter
value means that a bat has found the prey and temporarily stop emitting any
sound. The evolution rules for loudness and pulse rate are as follows:

AT = aA! (5)
I = 1011 — exp(—vg)] (6)

where « and v are constants. Note that for any 0 < o« < 1 an any v > 0 we have:

r

A? -0, 7 1) as g— oo (7)

In general, each bat should have different values for loudness and pulse emission
rate, which can be computationally achieved by randomization. To this aim, we
can take an initial loudness A9 € (0,2) while the initial emission rate 9 can
be any value in the interval [0, 1]. Loudness and emission rates will be updated
only if the new solutions are improved, an indication that the bats are moving

6 P. Suérez et al.

Fig. 3. Three different views of the graphical environment at initialization stage.

towards the optimal solution. As a result, the bat algorithm applies a parameter
tuning technique to control the dynamic behavior of a swarm of bats. Similarly,
the balance between exploration and exploitation can be controlled by tuning
algorithm-dependent parameters.

3 Bat Algorithm Method for the Robotic Swarms

3.1 The method

In this paper we consider the synthetic closed environment shown in Figure 3.
The figure is split into three parts for better visualization, corresponding to
two side view cameras from different locations and a top view camera. The
scene consists of a collection of cardboard boxes stacked in a messy way and
forming challenging structures for the robots such as corridors, tunnels, dead
ends, bifurcations, T-junctions, and the like. Although the robots of the two
swarms are functionally identical, they are depicted in red and yellow color
respectively for visualization purposes. Two blue spherical-shaped points of light
mark the target points ®; for the two robotic swarms.

As explained above, the goal of each robotic swarm Sy is to find its corre-
sponding target point ®;. In our approach, each robot moves autonomously,
according to the current values of its fitness function and parameters, and com-
municates them to the other members of the swarm. To this aim, each virtual
robot r}; is described at time instance j by a vector EZJ = { ;J ,x;'c’j ,vi’j},

where fi7, xp? = (z7,y,7) and v ; = (vy7,,vy7) represent the fitness value,

Interplay of Two Robotic Swarms in Non-Cooperative Target Point Search 7

position, and velocity, respectively. The robots are deployed at initial random
positions XZO and with random velocities VZO provided that they are restricted
to move within the map M. However, opposed to the usual procedure in swarm
intelligence methods, we refrain from deploying the robots randomly within all
the search space to avoid that some robots could accidentally initialize very near
to the target, thus reducing the complexity of the problem. For instance, as
shown in Fig. 3, the robots are initialized at random positions in the outermost
parts of the map. For the robots motion, we assume that M is described by a
tessellation of convex polygons 7). Then, we consider the set Ny € Ty (called
the navigation mesh) comprised by all polygons that are fully traversable by the
robots. At time j the fitness function f;” can be defined as the distance between

the current position x;'c’j and the target point ®;, measured on My as:

Fi? = 1" = @kllvad (8)

so our problem consists of minimizing the value of f,i’j , Vi, 7, k. This minimization
problem is solved by applying the bat algorithm described in Sect. 2.

3.2 Parameter tuning and implementation issues

A critical issue when working with swarm intelligence techniques is the parameter
tuning, which is well-known to be problem-dependent. Our choice has been fully
empirical, based on computer simulations for different parameter values and our
previous experience with the method. For computational efficiency, we set the
population size to 9 robots for each swarm, as larger values increase the number
of collisions among robots and, hence, the computational time. The initial and
minimum loudness and parameter « are set to 0.5, 0, and 0.6, respectively. We
also set the initial pulse rate and parameter v to 0.5 and 0.4, respectively. How-
ever, our results do not change significantly when varying these values slightly.
Regarding the stopping criterion, all executions are performed until all robots
reach the target point, no matter the number of iterations needed for completion.

Our method has been implemented in Unity 5 on a 3.8GHz quad-core Intel
Core i5, with 16GB of DDR3 memory, and a graphical card AMD RX580 with
8GB VRAM. All programming code in this paper has been created in JavaScript
using the Visual Studio framework.

4 Experimental Results

Our approach has been tested for many random initial locations of the robots in
the scene. Only three of them is described here because of limitations of space,
corresponding to three videos submitted as accompanying material. As above
mentioned, the robots are initialized at the outermost parts of the scene, where
the red and yellow swarms are randomly intertwined. Then, the bat algorithm
starts and both swarms try to reach their corresponding target points, located
in the middle of the central square of the scene for the yellow swarm and in a

8 P. Sudrez et al.

corner of the first ring around that square for the red swarm. The movement
of the robots is driven by the bat algorithm but also affected by three factors:
the complex and irregular geometry of the scene, the collisions with robots of
the other swarm and their own, and the fact that the map is unknown to the
robots. The later fact is clearly visible in Video 1 (seconds 14-16), when a yellow
robot crosses the central square on one side without realizing that is near to the
target point. However, at seconds 2022 two other yellow robots reach the central
square just at the center, so they are actually very near to the target. At that
point, one of them becomes the current best, attracting the other members of
the swarm over the iterations. Note also that, owing to the echolocation, the
robots can detect static obstacles and other robots before they collide, thus
avoiding crashing. In those cases, the robots move rapidly wandering to the left
and right, occasionally multiple times, trying to overcome the obstacle (see, for
instance, the red robots in bottom corner of main window at seconds 5-9). This
also explains why the robots are constantly moving, even after reaching the
target point, as they are trying to avoid colliding with other members of the
swarm. In some cases this leads to very crowded formations such as the contact-
less scrummage-like in seconds 16-19, where several robots from both swarms
gathering at a specific location try to avoid multiple collisions simultaneously.
We remark the ability of the robots to avoid the collisions and move forward
towards the target, showing the good performance of the bat algorithm for this
task. This fact becomes even more evident in Video 2, where all yellow robots get
trapped by the red robots in a dead end in the neighborhood of the target point
of the red swarm for seconds 28-45, until one of the yellow robots eventually
finds a way to escape, dragging the rest of the swarm in its movement towards
its own target point. The yellow robots are leaving the dead end one by one
until the last yellow robot, still trapped by five red robots (seconds 68-79) is
able to circumvent the red swarm and leaves the area. At their turn, these five
red robots find troubles to reach the target point (even when the other four
members are already there) due to their particular orientation facing each other,
thus preventing them from moving forward for a while. Finally, Video 3 shows
one of the rare examples of the robotic swarms able to reach their target points
with minimal interaction between the swarms.

5 Conclusions and Future Work

In this paper, we discuss some behavioral patterns found from the interplay of
two robotic swarms coexisting in the same environment and following a non-
cooperative approach when trying to reach their individual goals. To this aim,
we consider two robotic swarms driven by the bat algorithm and moving in an
unknown closed environment. As shown in the videos, the bat algorithm allows
the robotic swarms to get trapped while avoiding to collide with the other robots,
and find their targets in reasonable time.

In addition to the results described above, in our computer simulations we
found many other behavioral patterns for the robotic swarms. For instance, a

Interplay of Two Robotic Swarms in Non-Cooperative Target Point Search 9

qualitatively different behavioral pattern can be seen for the yellow robot nearest
to the target point of the red swarm in seconds 21-31 of Video 1, when the robot
stops moving while waiting for the red robots to gather around their target point
and free the path to this robot to join its own swarm. Other behavioral patterns
that we observed include moving in a formation (usually led by the global best
of the swarm), aggregation patterns for intensive exploration near the optima,
bifurcation moving patterns to perform simultaneous exploration for alternative
paths and avoid obstacles, cooperation among swarm members to force a robot of
the other team to move away, and ability to escape from U and V configurations
such as dead ends, among others. A full analysis of all these behavioral patterns
is part of our plans for future work in the field. We would also like to replicate
these experiments with the physical robotic swarms in real life for comparison
with the computer simulations.

Acknowledgements

This research is supported by the project PDE-GIR of the European Union’s
Horizon 2020 research and innovation programme under the Marie Sklodowska-
Curie grant agreement No 778035, the Spanish Ministry of Economy and Com-
petitiveness under grant #TIN2017-89275-R. of the Agencia Estatal de Investi-
gacién and European Funds FEDER (AEI/FEDER, UE), the project #JU12,
of SODERCAN and European Funds FEDER (SODERCAN/FEDER UE) and
the project EMAITEK of the Basque Government.

References

1. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective, Swarm Intelligence, 1-41 (2013).

2. Iglesias, A., Galvez, A., Collantes, M.: Multilayer embedded bat algorithm for B-
spline curve reconstruction. Integ. Computer-Aided Eng., 24(4), 385-399 (2017).

3. Iglesias, A., Gélvez, A., Collantes, M.: Iterative sequential bat algorithm for free-
form rational Bézier surface reconstruction. Int. J. Bio-inspired Computation, 11(1),
1-15 (2018).

4. Suérez, P., Iglesias, A.: Bat algorithm for coordinated exploration in swarm robotics.
Advances in Intelligent Systems and Computing, 514, 134-144 (2017).

5. Sudrez, P., Galvez, A., Iglesias, A.: Autonomous coordinated navigation of virtual
swarm bots in dynamic indoor environments by bat algorithm. Int. Conf. in Swarm
Intelligence, ICSI 2017. Lecture Notes in Computer Science, 10386, 176-184 (2017).

6. Sudrez, P., Iglesias, A., Gélvez, A.: Make robots be bats: specializing robotic
swarms to the bat algorithm. Swarm and Evolutionary Computation (in press)
DOI: 10.1016/j.swevo.2018.01.005.

7. Yang, X.S.: A new metaheuristic bat-inspired algorithm. Studies in Computational
Intelligence, Springer Berlin, 284, pp. 65-74 (2010).

8. Yang, X. S..: Bat algorithm for multiobjective optimization. Int. J. Bio-Inspired
Computation, 3(5), 267-274 (2011).

9. Yang, X.S., Gandomi, A.H.: Bat algorithm: a novel approach for global engineering
optimization. Engineering Computations, 29(5), 464-483 (2012).

10. Yang, X.S.: Bat algorithm: literature review and applications. Int. J. Bio-Inspired
Computation, 5(3), 141-149 (2013).

