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Abstract. This paper proposes a new memetic approach to address the
problem of obtaining the optimal set of individual Self-Similar Contrac-

tive Functions (SSCF) for the reconstruction of self-similar binary IFS
fractal images, the so-called SSCF problem. This memetic approach is
based on the hybridization of the modified cuckoo search method for
global optimization with a new strategy for the Lévy flight step size
(MMCS) and the adaptive step size random search (ASSRS) heuristics
for local search. This new method is applied to some illustrative examples
of self-similar fractal images with satisfactory graphical and numerical
results. Our approach represents a substantial improvement with respect
to a previous method based on the original cuckoo search algorithm for
all contractive functions of the examples in this paper.

Keywords: image reconstruction, swarm intelligence, cuckoo search al-
gorithm, fractal images, iterated function systems, contractive functions

1 Introduction

Fractals are one of the most interesting mathematical objects ever defined. They
are also very popular in science due to their ability to describe many growing
patterns and natural structures (branches of trees, river networks, coastlines,
mountain ranges, and so on). Furthermore, fractals have also found remarkable
applications in computer graphics, scientific visualization, image processing, dy-
namical systems, medicine, biology, arts, and other fields [1, 2, 8–10].

One of the most popular methods to obtain fractals images is the Iterated

Function Systems (IFS), conceived by J.E. Hutchinson [11] and popularized by
M. Barnsley in [1]. Roughly, an IFS consists of a finite system of contractive
maps on a complete metric space. Any IFS has a unique non-empty compact
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fixed set A called the attractor of the IFS. The graphical representation of this
attractor is (at least approximately) a self-similar fractal image. Conversely, each
self-similar fractal image can be represented by an IFS. Obtaining the parameters
of such IFS is called the IFS inverse problem. Basically, it consists of solving an
image reconstruction problem: given a self-similar fractal image, determine the
IFS whose attractor approximates such input image accurately. This IFS inverse
problem is so difficult that only partial solutions have been reached so far. A
very promising strategy is to split up the problem into two steps: firstly, obtain
a suitable collection of individual self-similar contractive functions for the IFS,
the so-called SSCF problem. The output of this step is then applied to compute
the optimal solution for the general IFS inverse problem.

A previous paper addressed this first step by using the cuckoo search (CS)
algorithm [13]. Although the method provided nice visual results, its accuracy
was far from optimal, and can still be improved. Recently, the original CS has
been improved and modified for better performance. In this sense, the present
paper proposes a new hybrid scheme based on the CS and called Memetic Mod-

ified Cuckoo Search (MMCS). Our approach combines two techniques: firstly,
we consider a variant proposed in [17] of the original cuckoo search algorithm
for global optimization and called Modified Cuckoo Search (MCS). This variant
is based on two important modifications: (1) the value of the Lévy flight step
size is changed dynamically with the iterations; (2) the addition of information
exchange between the eggs to speed up convergence to the optimum. In our ap-
proach, the Lévy flight step size is changed according to a new strategy proposed
in this paper. This technique is hybridized with the Adaptive Step Size Random

Search (ASSRS), a local search heuristics based on changing adaptively the ra-
dius of the hypersphere around the most promising solutions for higher accuracy
and to escape from local optima.

The structure of this paper is as follows: Section 2 introduces the mathe-
matical background about the iterated function systems and the SSCF problem.
Then, Section 3 describes the original and the modified cuckoo search algorithms.
Our proposed MMCS method is described in detail in Section 4, while the ex-
perimental results are briefly discussed in Section 5. The paper closes with the
main conclusions and some ideas about future work in the field.

2 Mathematical Background

2.1 Iterated Function Systems

An Iterated Function System (IFS) is a finite set tφiui�1,...,η of contractive maps
φi : Ω ÝÑ Ω defined on a complete metric space M � pΩ,Ψq, where Ω � R

n

and Ψ is a distance on Ω. We refer to the IFS as W � tΩ; φi, . . . , φηu. For
visualization purposes, in this paper we consider that the metric space pΩ,Ψq is
R

2 along with the Euclidean distance d2, which is a complete metric space. In
this case, the affine transformations φκ are of the form:
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or equivalently: ΦκpΞq � Θκ.Ξ�Σκ where Σκ is a translation vector and Θκ

is a 2 � 2 matrix with eigenvalues λκ
1 , λκ

2 such that |λκ
j |   1. In fact, µκ �|detpΘκq|   1 meaning that φκ shrinks distances between points. Let us now

define a transformation, Υ , in the set of compact subsets of Ω, HpΩq, by

Υ pSq � η¤
κ�1

φκpSq. (2)

If all the φκ are contractions, Υ is also a contraction in HpΩq with the induced
Hausdorff metric [1, 11]. Then, according to the fixed point theorem, Υ has a
unique fixed point, Υ pAq � A, called the attractor of the IFS.

Let us now consider a set of probabilities P � tω1, . . . , ωηu, with
°η

κ�1
ωκ � 1.

There exists an efficient method, known as probabilistic algorithm, for the gener-
ation of the attractor of an IFS. Picking an initial point ξ0, one of the mappings
in the set tφi, . . . , φηu is chosen at random using the weights tω1, . . . , ωηu and
then applied to generate a new point; the same process is repeated again with the
new point and so on. As a result, we obtain a sequence of points that converges
to the fractal as the number of points increases. This set of points represents
graphically the attractor of the IFS.

2.2 The Self-Similar Contractive Functions (SSCF) Problem

Suppose that we are given an initial self-similar fractal image I�. The Collage

Theorem says that it is possible to obtain an IFS W whose attractor has a
graphical representation I� that approximates I� accurately according to a
error function E between I� and I�. Note that I� � Υ pO�q for any image O�.
Mathematically, this means that we have to solve the optimization problem:

minimizetΘκ,Σκ,ωκuκ�1,...,η

E
�
I

�, Υ pO�q� (3)

which is a continuous constrained optimization problem, since all free variables
in tΘκ,Σκ, ωκuκ are real-valued and must satisfy the condition that all φκ have
to be contractive. It is also a multimodal problem, since there can be several
global or local minima of the error function. So far only partial solutions have
been reported, but the general problem remains unsolved.

A promising strategy to tackle this issue is to solve firstly the sub-problem of
computing a suitable collection of self-similar contractive functions for the IFS
(this is called the SSCF problem). However, even this SSCF problem is challeng-
ing because we do not have any information about the number of contractive
functions and their parametric values. To overcome this limitation, a previous
paper applied a given number of contractive maps φκ onto the original fractal
image I� and compare the resulting images according to the error function E in
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order to obtain suitable values for the SSCF parameters [13]. With this strategy,
the original problem (3) was transformed into the optimization problem:

minimizetΘκ,Σκ,ωκuκ�1,...,η

E
�
I

�, φκpI�q� pκ � 1, . . . , ηq (4)

The cuckoo search algorithm was applied to solve this optimization problem
[13]. Unfortunately, although the reconstructed figures looked nice visually, the
accuracy was far from optimal in terms of the numerical similarity error rates.
In this paper, we modify that CS-based method to improve those results.

3 The Cuckoo Search Algorithms

3.1 Original Cuckoo Search (CS)

The cuckoo search (CS) is a powerful metaheuristic algorithm originally proposed
by Yang and Deb in 2009 [19]. Since then, it has been successfully applied to
difficult optimization problems [4, 12, 18, 20]. The algorithm is inspired by the
obligate interspecific brood-parasitism of some cuckoo species that lay their eggs
in the nests of host birds of other species to escape from the parental investment
in raising their offspring and minimize the risk of egg loss to other species.

This interesting breeding behavioral pattern is the metaphor of the cuckoo
search metaheuristic approach for solving optimization problems. In this algo-
rithm, the eggs in the nest are interpreted as a pool of candidate solutions
while the cuckoo egg represents a new coming solution. The ultimate goal of the
method is to use these new (and potentially better) solutions associated with the
parasitic cuckoo eggs to replace the current solution associated with the eggs in
the nest. This replacement, carried out iteratively, will eventually lead to a very
good solution of the problem. In addition to this representation scheme, the CS
algorithm is also based on three idealized rules [19, 20]:

1. Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest;
2. The best nests with high quality of eggs (solutions) will be carried over to

the next generations;
3. The number of available host nests is fixed, and a host can discover an alien

egg with a probability pa P r0, 1s. For simplicity, this assumption can be
approximated by a fraction pa of the n nests being replaced by new nests
(with new random solutions at new locations).

The basic steps of the CS algorithm are summarized in Table 1. It starts with
an initial population of n host nests and it is performed iteratively. The initial
values of the jth component of the ith nest are determined by the expression
x

j
i p0q � rand.pup

j
i � low

j
i q � low

j
i , where up

j
i and low

j
i represent the upper

and lower bounds of that jth component, respectively, and rand represents a
standard uniform random number on the interval p0, 1q. With this choice, the
initial values are within the search space domain. These boundary conditions
are also controlled in each iteration step. For each iteration t, a cuckoo egg i
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Table 1. Cuckoo search algorithm via Lévy flights as originally proposed in [19, 20].

Algorithm: Cuckoo Search via Lévy Flights

begin

Objective function fpxq, x � px1, . . . , xDqT
Generate initial population of n host nests xi pi � 1, 2, . . . , nq
while pt   MaxGenerationq or (stop criterion)

Get a cuckoo (say, i) randomly by Lévy flights
Evaluate its fitness Fi

Choose a nest among n (say, j) randomly
if (Fi ¡ Fjq

Replace j by the new solution
end

A fraction (pa) of worse nests are abandoned and new ones
are built via Lévy flights

Keep the best solutions (or nests with quality solutions)
Rank the solutions and find the current best

end while

Postprocess results and visualization
end

is selected randomly and new solutions xt�1

i are generated by using the Lévy
flight. The general equation for the Lévy flight is given by:

xt�1

i � xt
i � α` levypλq (5)

where α ¡ 0 indicates the step size (usually related to the scale of the problem)
and ` indicates the entry-wise multiplication. The second term of Eq. (5) is a
transition probability modulated by the Lévy distribution as:

levypλq � t�λ, p1   λ ¤ 3q (6)

which has an infinite variance with an infinite mean. The authors in [20] sug-
gested to use the Mantegna’s algorithm, which computes the factor:

φ̂ � ��Γ p1� β̂q.sin�π.β̂
2

	
Γ
��

1�β̂
2

	
.β̂.2

β̂�1

2

	�
1

β̂

(7)

where Γ denotes the Gamma function and β̂ � 3{2 in [20]. This factor is used

in Mantegna’s algorithm to compute the step length as: ς � u{|v| 1β̂ , where u

and v follow the normal distribution of zero mean and deviation σ2

u and σ2

v ,
respectively, where σu obeys the Lévy distribution given by Eq. (7) and σv � 1.
Then, the stepsize ζ is computed as ζ � 0.01 ς px�xbestq. Finally, x is modified
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as: x � x�ζ.∆ where ∆ is a random vector that follows the normal distribution
Np0, 1q. The CS evaluates the fitness of the new solution and compares it with
the current one. In case that the new solution brings better fitness, it replaces the
current one. On the other hand, a fraction of the worse nests are abandoned and
replaced by new solutions to increase the exploration of the search space looking
for more promising solutions. The rate of replacement is given by the probability
pa, a parameter of the model that has to be tuned for better performance.
Moreover, for each iteration step, all current solutions are ranked according to
their fitness and the best solution reached so far is stored as the vector xbest.

3.2 Modified Cuckoo Search (MCS)

The modified cuckoo search (MCS) method [17] aims at improving the perfor-
mance of the original CS described above through two important modifications:

1. the value of the Lévy flight step size, α, assumed constant in the CS, is
decreased with the number of iterations. The reason is to promote local
search as the individuals get closer to the solution, in a rather similar way to
the inertia weight in PSO. In [17] an initial value of the Lévy step size α0 � 1
is chosen. At each generation t, the new step size is computed adaptively as:

αt � α0?
t

(8)

This modification is only applied on the set of nests to be abandoned.
2. the addition of information exchange between the eggs to speed up conver-

gence to the optimum. In the original CS, the search relies on random walks
so fast convergence is not guaranteed. In the MCS, some eggs with the best
fitness are selected for a set of top eggs. For each of the top eggs, a second
egg is chosen randomly and then a third egg is generated on the path from
the top egg to the second one, at a distance given by the inverse of the golden
ratio ϕ � p1�?

5q{2, so that it gets closer to the top egg.

With these modifications, the MCS performs better than the CS for several
examples, showing a higher convergence rate to the actual global minimum [17].

4 Proposed Approach

4.1 Memetic Modified Cuckoo Search (MSA-MCS)

To address the SSCF problem, a new hybrid CS scheme called Memetic Mod-

ified Cuckoo Search is proposed. Now, the exploration-exploitation trade-off is
achieved through the combination of two techniques:

1. We adopt the MCS method for global optimization. However, instead of
the adaptive method in Eq. (8), we consider a new strategy to modify α

dynamically, given by:

αt�1 � αt Exp

��2π

�
t� 1

Λ


�
(9)
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where Λ denotes the maximum number of iterations. The main difference
between both strategies is that the values for α at early iterations are larger
for Eq. (9), and the opposite for last iterations (i.e., Eq. (9) boosts a larger
exploration at early stages and a larger exploitation at late stages).

2. This global-search technique is then hybridized with a local-search heuris-
tics: the Adaptive Step Size Random Search technique [16]. It is based on the
idea of changing adaptively the radius of the hypersphere around the most
promising solutions for higher accuracy and to escape from local optima.
Roughly, the method starts by sampling two points from a hypersphere sur-
rounding the most promising solutions (using Marsaglia’s technique [14]).
These two points are sampled at different radius, the current one and a
larger step in each iteration; the larger is accepted whenever it leads to an
improved result. If neither of the two step values lead to improvement for
several iterations in a row, smaller step sizes are taken, and the algorithm
continues.

Of course, these new features introduce new control parameters in our method,
that have also to be properly tuned. This issue will be discussed in Section 4.3.

4.2 Application to the SSCF problem

Given a 2D self-similar binary fractal image I�, we apply the MSA-MCS method
to solve the SSCF problem. We consider an initial population of χ individualstCiui�1,...,χ, where each individual Ci � tCκ

i uκ is a collection of η real-valued
vectors Ci

κ of the free variables of Eq. (1), as:

C
i
κ � pθκ,i

1,1, θ
κ,i
1,2, θ

κ,i
2,1, θ

κ,i
2,2|σκ,i

1
, σ

κ,i
2
|ωi

κq (10)

These individuals are initialized with uniform random values in r�1, 1s for the
variables in Θκ and Σκ, and in r0, 1s for the ωi

κ, such that
°η

κ�1
ωi

κ � 1. After
this initialization step, we compute the contractive factors µκ and reinitialize all
functions φκ with µκ ¥ 1 to ensure that only contractive functions are included
in the initial population. Before applying our method, we also need to define a
suitable fitness function. Different metrics can be used for our problem. The most
natural choice is the Hausdorff distance, but it is computationally expensive and
inefficient for this problem. In this paper the Hamming distance is used instead:
we consider the fractal images as binary bitmap images on a grid of pixels for
a given resolution defined by a mesh size parameter, ms. This yields matrices
with 0s and 1s, where 1 means that the pixel is activated and 0 otherwise. Then,
we count the number of mismatches between the original and the reconstructed
matrices to determine the similarity error rate between both images. Dividing
this value by the total number of active pixels in the image yields the normalized

similarity error rate (NSER). This is the fitness function used in this paper.

4.3 Parameter Tuning

The parameter tuning of metaheuristics is slow, difficult, and problem-dependent.
Fortunately, the cuckoo search is specially advantageous in this regard, as it only
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Fig. 1. Graphical results for the Sierpinsky gasket fractal: (left) original images of the
three contractive functions; (right) reconstructed images with the MSA-MCS method.

depends on two parameters: the population size, χ, and the probability pa. We
carried out some numerical trials for different values of these parameters and
found that χ � 40 and pa � 0.25 are very adequate for our problem. However,
the MCS also requires three additional parameters: the initial step size for the
Lévy flights, α0, the number of nests to be abandoned, ρ, and the fraction of
nests to make up the top nests, τ . Following some previous works, they have
been set to α0 � 1, ρ � 0.75 and τ � 0.25, respectively. Moreover, the method is
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Fig. 2. Graphical results for the Christmas tree fractal: (left) original images of the
three contractive functions; (right) reconstructed images with the MSA-MCS method.

executed for Λ iterations. In our simulations, we found that Λ � 2500 is enough
to reach convergence in all cases. In addition to the control parameters for our
method, we also need two more parameters related to the problem: the number
of contractive functions η and the mesh size, ν. In this work, they are set to
η � 3 and ν � 40, respectively. Unfortunately, we cannot analyze here how all
our parameters affect the method performance because of limitations of space.
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Fig. 3. Convergence diagram of the normalized similarity error rate for the three con-
tractive functions (left to right) of the Sierpinsky gasket (top) and the Christmas tree
(bottom) with the original CS algorithm (red dashed line) and our MSA-MCS method
(blue solid line).

Table 2. Numerical results of the normalized similarity error rate for the three con-
tractive functions of the examples in Figs. 1 and 2 with the original CS algorithm and
our MSA-MCS method (see also Fig. 3 for their graphical representation).

Sierpinsky gasket Christmas tree

NSER(φ1) NSER(φ2) NSER(φ3) NSER(φ1) NSER(φ2) NSER(φ3)

Best (CS): 0.4798 0.4178 0.4296 0.2445 0.2382 0.2547
Mean (CS): 0.4992 0.4333 0.4501 0.2603 0.2511 0.2769

Best (MSA-MCS): 0.4124 0.3805 0.3849 0.2014 0.2008 0.2113
Mean (MSA-MCS): 0.4403 0.4157 0.4195 0.2206 0.2257 0.2331

5 Experimental Results

All computations in this paper have been performed on a 2.6 GHz. Intel Core i7
processor with 16 GB. of RAM. The source code has been implemented by the
authors in the native programming language of the popular scientific program
Matlab version 2015a and using the numerical libraries for fractals in [3, 5–7]. Our
method has been applied to several examples of fractals with η � 3. Only two
(already analyzed in [13]) are included here because of limitations of space: the
Sierpinsky gasket and the Christmas tree, depicted in Figs. 1 and 2, respectively.
The figures show the fractal images of the original (in red) and the reconstructed
(in blue) contractive functions on the left and the right columns, respectively.
The images correspond to the best value of the NSER fitness function selected
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from a set of 50 independent executions. As shown in the images, our MSA-MCS
approach captures the structure and general shape of the contractive functions
with high visual quality. This is a remarkable result because our initial population
is totally random, meaning that their corresponding images are all very far from
the given fractal image. Figure 3 shows the convergence diagram for the three
contractive functions (from left to right) of the Sierpinsky gasket (top row) and
the Christmas tree (bottom row) using the original CS method (as reported in
[13]) and the new MSA-MCS method, displayed as red dashed lines and blue solid
lines respectively. This figure shows that the new method MSA-MCS outperforms
the previous CS method for all contractive functions of both examples.

The good visual appearance of the method in Figs. 1-2 and its graphical
comparison with the CS method in Fig. 3 are all confirmed by our numerical
results reported in Table 2. The table shows the best and the mean values of
the normalized similarity error rate, NSERpφκq, for 50 independent runs. These
results indicate that the new MSA-MCS method performs quite well. It also
improves the previous results in [13] based on the original CS algorithm by a
significant margin in all cases. For instance, we can see that the even the mean
value of NSER for MSA-MCS is better that the best value of NSER with the
original CS method. In other words, it is not a case of just an incremental
improvement, but a significant one statistically.

6 Conclusions and Future Work

In this paper we address the problem to compute the optimal set of individual
contractive functions for the reconstruction of self-similar binary fractal images.
To this aim, we propose a memetic approach comprised of the modified CS
method for global optimization with a new strategy for the Lévy flight step size
(MMCS) and the ASSRS heuristics for local search. This approach is applied to
some illustrative examples of fractal images with satisfactory results. This new
method shows a significant improvement with respect to a previous approach
based on the original CS for all functions in our benchmark.

In spite of these good results, there is still room for further improvement in
the SSCF problem. We also wish to address the second step of the general IFS
inverse problem for self-similar fractal images and its extension to the case of
non self-similar fractals. We also plan to apply a very promising recent hybrid
self-adaptive cuckoo search [15] to our problem as part of our future work.
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functional optimization in global-support curve data fitting. The Scientific World

Journal, 2014, Article ID 138760, 11 pages (2014).
5. Gálvez, A., Iglesias, A., Takato, S.: Matlab-based KETpic add-on for generating

and rendering IFS fractals. CCIS, 56, 334–341 (2009).
6. Gálvez, A., Iglesias, A., Takato, S.: KETpic Matlab binding for efficient handling of

fractal images. Int. J. Future Generation Comm. & Networking, 3(2), 1–14 (2010).
7. Gálvez, A., Kitahara, K., Kaneko, M.: IFSGen4LaTeX: Interactive graphical user

interface for generation and visualization of iterated function systems in LATEX.
LNCS 8592, 554–561 (2014).

8. Gutiérrez, J.M., Iglesias, A.: A Mathematica package for the analysis and control
of chaos in nonlinear systems. Computers in Physics, 12(6), 608–619 (1998).
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