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Abstract This paper outlines a short overview of swarm intelligence algorithms that
are used within the software engineering area. Swarm intelligence algorithms have
been used in many software engineering tasks, e.g., grammatical inference or mu-
tation testing. However, their presence in the agile software development field is
still awakening. As there are some promising results of solving different problems
of agile software development with swarm intelligence, this paper discusses such
problems and the proposed solutions within the last decade. Based on the results we
propose a systematic classification of swarm intelligence algorithms according to
problems within agile software development, i.e., next release problem, risk, soft-
ware design, software cost estimation, and software effort estimation. Afterwards,
we present papers that fall in the scope of the proposed classification, and provide
highlights of each paper for researchers, conducting research in this and associated
fields. In this manner, we provide some conclusions for each of the classified prob-
lem groups, and, in the end, we review the guidelines for the future.

1 Introduction

Swarm intelligence or, simply, SI algorithms, are a sub-branch of Computational
Intelligence. Loosely speaking, swarm intelligence algorithms are methods that are
inspired mostly by nature. In other words, they concern the collective, emerging
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behavior of multiple, interacting agents who follow some simple rules [7]. These
agents might be considered as unintelligent. Interestingly, when working together,
the whole system of multiple agents may show some self-organization behavior
(collective intelligence). The history of swarm intelligence goes back to 1989 when
Beni [4] coined this term. Expansion of these algorithms began after the 1990s. On
the one hand, researchers showed that they are very useful when solving continuous
optimization problems, while, on the other, they also behave well in discrete opti-
mization problems. Interestingly, there are also a lot of practical applications that
are based on SI algorithms in the real world. During the past decades, many swarm
intelligence algorithms were also applied in the domain of Software Engineering,
along with evolutionary algorithms [12]. Mostly, researchers were concentrated on
solving problems such as the development of mutation testing [13], grammatical
inference [21], and test effort estimation [27]. In contrast, too little attention was
devoted to the swarm intelligence algorithms in the domain of agile software de-
velopment. According to our literature research, we saw that in recent years more
applications had been proposed in the literature. For that reason, the primary mis-
sions of this paper are:

• to present a short overview of this vital research field,
• to review this research field and classify problems that are solved by swarm in-

telligence algorithms,
• to study why swarm intelligence algorithms are useful for solving problems

within the agile software development research field, and
• to determine guidelines for the future of this research field.

The structure of this paper is as follows: Section 2 acquaints the reader with the
fundamentals of swarm intelligence, while Section 3 presents agile software devel-
opment methods. Section 4 discusses problems in agile software development that
were tackled by swarm intelligence algorithms. Section 5 is devoted to the future of
this field, while the paper is concluded with a summary of SI methods in the agile
software development field.

2 Core fundamentals of swarm intelligence

Let us imagine bees when searching for nectar, or ants when building anthills, or
even fireflies when mating during the summer nights. At first sight, we can say that
they are pure individuals that would like to survive in their natural habitat. How-
ever, this observation is not correct. Although these individuals are considered as
unintelligent, they cooperate in each aspect. These characteristics can be conceived
as swarm intelligence. Swarm intelligence involves the collective, emerging behav-
ior of multiple, interacting agents who follow some simple rules. While each agent
may be considered as unintelligent, the whole system of multiple agents may show
some self-organizing behavior and, thus, can behave as a kind of collective intelli-
gence [7].
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Nowadays, many algorithms have been developed by drawing inspiration from
swarm intelligence systems. Roughly speaking, there are probably more than 100
SI algorithms, due to the popularity of SI research. However, some researchers have
recently warned that some algorithms might have roots in existing algorithms [26].
Among the most well-established SI algorithms are: Particle Swarm Optimiza-
tion (PSO), Ant Colony Optimization (ACO), Artificial Bee Colony Optimization
(ABC), Firefly Algorithm (FA), Cuckoo Search (CS) and Bees Algorithms (BA).

Initialize population

Evaluate fitness function

Update and move agents

Return the global best solution

Yes

NoDefined stop  
condition reached?

Fig. 1 Swarm intelligence framework [7].

Even though there is a bunch of SI algorithms, all of them follow the SI frame-
work presented in Fig.1. All SI algorithms are population-based. Therefore, the first
step in the algorithm is a random generation of the initial population and evaluation
of this population. Later, in the main loop, the individuals in the search space are
moved towards the best individuals, while the best-evaluated individuals are selected
for the next generation.

3 Agile methods

Nowadays, we can hardly find non-agile software companies, i.e., companies that
do not utilize agile practices in their product, the project development, or both. The
main reason for that is because they want to accelerate product delivery, enhance
the ability to manage changing priorities, and increase productivity [29]. Thus, we
can see that the biggest problem of the traditional approaches is their incapability
to respond to the constant flow of changes quickly even though this is the most
important thing for the customers. Consequently, many agile methodologies were
proposed and introduced in companies all around the world. The most frequently
used are still Scrum and some custom Scrum hybrids (62%), followed by Scrumban
(8%), and Kanban (5%) [29].
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The question that arises here is why do we need to include swarm intelligence
techniques into agile software development? The answer is quite simple. Firstly,
agile software development is more than just code writing and testing. Many opti-
mization problems occur already at the beginning of a project, i. e., planning. What
are the functionalities that must be developed in the first iteration? How will we eval-
uate the effort of the tasks? How long will it take us to develop a specific task? These
are just a few questions that project managers are dealing with daily. However, the
advantage of those questions is that we can describe and present them as optimiza-
tion problems. After the problem is described mathematically, we can tackle it with
many SI algorithms to find the optimal solution for the given problem. Although op-
timal solutions are mostly hard to find because of the multiple conflicting objectives
such as lack of data and benchmarks, the research on this field is awakening.

In Section 4, we present some solutions where researchers introduced SI algo-
rithms to specific agile software design problem. Search methodology is defined in
Subsection 4.1 and the obtained results in Subsection 4.2.

4 Methods and applications

4.1 Search Methodology

The methodology for searching the relevant literature for this paper is the following.
Firstly, we defined the search term. We combined the most used SI algorithms (PSO,
ACO, ABC, CS, BA, and CaSO) with the software development problem (NRP, R,
SD, SCE, and SEE). For example, while searching for papers that applied the PSO
algorithm to the next release problem, we used the following search term: ((”PSO”
OR ”particle swarm optimization” OR ”particle swarm optimisation”) AND (”Next
Release Problem”)).

The search was limited to the four major databases, i.e., Springer Link, IEEE
Explore, Google Scholar, and ScienceDirect. Next step combined pre-screening of
the results, where we eliminated redundant and inappropriate results. This approach
resulted in 21 selected papers that are presented in detail in Subsection 4.2.

4.2 Results

Agile software development problems tackled with the SI algorithms can be divided
into the following five groups:

Next Release Problem (NRP) is present in software development companies all
the time. In this phase, features should be selected that must be developed in the
next release. The selection process is very hard, since multiple constraints must
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be taken into account, such as cost, time, dependent requirements, client satisfac-
tion, reliability. The goal is to find the optimal solution for the given restrictions;

Risk (R) To satisfy requirements of quality software, risk factors must be well
defined and prioritized to avoid any overpayment of costs or money. Thus, the
authors try to apply techniques for risk factor prioritization;

Software Design (SD), where software designers try to find good designs of soft-
ware in the early stages of the software development process. The authors tackle
this problem with different interactive and non-interactive approaches;

Software Cost Estimation (SCE) is a process in which the required time and
cost are predicted. When dealing with this kind of problem, the authors, in most
cases, try to tune the parameters of the Constructive Cost Model (COCOMO);

Software Effort Estimation (SEE), as the name implies, is a process in which
the amount of effort required to develop a product increment is estimated. Such
estimations are, in literature, done in many cases with Case-Based Reasoning
(CBR) and fuzzy logic for simulation of the uncertainty factors.

PSO ACO ABC CS BA CaSO
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Fig. 2 Bubble plot for the number of papers regarding two variables: Algorithm (x-axis) and soft-
ware development problem (y-axis).

Based on our literature research, only six different SI algorithms were applied to
solve the mentioned problems, i.e., PSO, ACO, ABC, Cuckoo Search (CS), Bee Al-
gorithm (BA), and Cat Swarm Optimization (CaSO). An overview of the findings, in
which eleven journal articles, seven book chapters, and three papers from conference
proceedings have been included, is presented in Tables 2– 4, while Fig. 2 presents
the distribution of SI algorithms across different software development tasks, and
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Fig. 3 Analyzed papers that appeared in a particular year.

Fig. 3 presents the dynamics of the occurrence of specific algorithms in the liter-
ature over time 1. As we can see from Tables 2– 4, each paper is described with
the base SI algorithm, the algorithms and/or methods used to compare the obtained
results of the proposed SI algorithm with, and some remarks on the proposed SI
algorithm for a given software development problem.

The papers addressing the NRP are listed in Table 2. The proposed SI algo-
rithms, aimed at optimizing the selection of features to be developed in the next
release, are focused primarily on finding the optimal solution while fulfilling all
given constraints (time, interaction, cost, and budget thresholds, effort boundaries,
constraints regarding requirements, Scrum task allocation). Within this category,
ACO and ABC are used predominantly, while being primarily compared to genetic
algorithms, simulated annealing, hill climbing, GRASP, and NSGA-II, as well as to
manual optimization.

Table 1 lists the papers which address the SCE problems. When compared to
NRP, the number of research papers within this category is much smaller. ACO,
PSO, and CS algorithms have been used here to best estimate the required time and
cost of software development projects. Interestingly, all the proposed SI algorithms
within this category have been, besides to the COCOMO model and genetic pro-
gramming, compared to other SI algorithms, which suggests that there is a lack of
existing cost estimation methods available.

1 Note that only the last nine years were considered in this study.
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The papers listed in Table 3 address the SEE problems in software development.
The PSO algorithm is used predominantly for problems within this category, fol-
lowed by the ABC and BA algorithms. Similar to the SCE problems, also here, the
fuzzy logic is applied in some cases to handle the uncertainty in effort estimation.
Besides providing the absolute effort estimation, the SI algorithms are also used to
reduce the difference between actual and predicted effort when using some other
prediction methods or techniques. Within this category, the proposed SI algorithms
are, in general, compared with the highest number of other existing effort estima-
tion approaches, including the COCOMO model, analogy-based estimation, genetic
algorithms, artificial neural networks, case-based reasoning, multiple regression, re-
gression towards the mean, stepwise regression, as well as to a number of other SI
algorithms, mostly ABC (and PSO, if the proposed algorithm is not based on it).

Finally, Table 4 lists the papers which address some other software development
problems (SD, R). The research on these topics is scarce, as we have been able to
find only two such papers. Like other software development problems, however,
also here the two most commonly used SI algorithms have been used – PSO and
ACO. They have both been compared to methods from the decision analysis area,
which combine objective and subjective measures to find a solution that best utilizes
the given goals.

To summarize the most important findings, we see that not many SI algorithms
were applied to solve software development problems. Out of those algorithms
which were, PSO still predominates (39%), followed closely by ACO (33%) (See
Fig. 2). However, regardless of the used algorithm, it seems that, for uncertainties
in software development problems (especially in SEE and SCE) authors simulate
mostly with the use of fuzzy logic.

Table 1 Overview of the SI algorithms used for the SCE problems

Ref Base Compared to Remarksalgorithm
[28] ACO PSO, GP,

RMSE
Proposed algorithm combined with TSP for
SCE. Results were evaluated with three datasets
in terms of Root Mean Square Error (RMSE).

[16] CS COCOMO,
KNN,
CUCKOO-KNN

Proposed fuzzy inference system combined with
Cuckoo optimization algorithm. Results were
evaluated with tera-PROMISE datasets in terms
of improved accuracy and cost estimation.

[24] PSO COCOMO Proposed model for COCOMO parameters’ tun-
ing using multi-objective PSO with objectives
(mean absolute relative error and prediction).
Results were evaluated with the COCOMO
dataset.

* KNN–k-Nearest Neighbors; TSP–Traveling Salesman Problem



8 Lucija Brezočnik, Iztok Fister Jr. and Vili Podgorelec

Table 2 Overview of the SI algorithms used for the NRP problems

Ref Base Compared to Remarksalgorithm
[23] ABC MOTLBO Proposed algorithm with objectives (minimum

cost, maximum client satisfaction, minimum
time consumption and maximum reliability) and
constraints (time threshold, interaction and cost
threshold). Results were evaluated in terms of
hyper-volume indicator, spread indicator and
number of non-dominated solutions.

[8] ABC ACO, NSGA-II,
GRASP

Proposed algorithm with objectives (cost and
satisfaction) and constraints (types of interac-
tion). Results were evaluated with two real life
datasets with the interms of hyper-volume in-
dicator, spread indicator and number of non-
dominated solutions.

[11] ACO NIACS Proposed single-objective formulation for the in-
teractive version of the NRP with the budget con-
straints and incorporated user preferences. Re-
sults were evaluated with three real life datasets
in terms of budget constraints and user prefer-
ences.

[10] ACO GRASP,
NSGA-II

Proposed multi-objective ACS for requirements’
selection. Results were evaluated with two real
life datasets in terms of hyper-volume indica-
tor, spread and spacing indicators, and number
of non-dominated solutions. Highlighted were
problems with crossover and mutation opera-
tions in NSGA-II in NRP.

[9] ACO GA, SA Proposed method for the NRP problem with de-
pendent requirements. Results were evaluated
with the 72 synthetic datasets in terms of qual-
ity and execution time.

[14] ACO GA, SA, FHC,
ACO

Proposed hybrid ACO method with incorporated
local search to improve solution quality. Results
were evaluated with five synthetic datasets in
terms of solution quality and execution time.

[15] CaSO synthetic
dataset

Proposed multi-objective collaborative schedul-
ing model for NRP. Results were evaluated with
dataset in terms of product development time and
costs.

[5] PSO manual alloca-
tion

Proposed method for Scrum task allocation
problem with constrains. Results were evaluated
with the real life internal project.

* FHC–First Found Hill Climbing; SA–Simulated Annealing; CaSO–Cat Swarm Optimization
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Table 3 Overview of the SI algorithms used for the SEE problems

Ref Base Compared to Remarksalgorithm
[19] ABC ABC,

COCOMO II
Proposed algorithm with the teaching-learning
mechanism applied to the ABC algorithm. Re-
sults were evaluated with a NASA software
project dataset in terms of SEE. Highlighted
faster convergence than ABC.

[18] ABC/
PSO

ABC, PSO,
regression

Proposed method based on velocity and story
point factors, where parameters are optimized
using PSO. Results were evaluated on dataset in
terms of accuracy of predicted results.

[3] BA CBR, GA,
RTM, other
papers

Proposed method to adjust the retrieved project
efforts and find the optimal number of analo-
gies by using BA. Results were evaluated on six
datasets in terms of different performance mea-
sures. Search capability of the BA applied to
overcome the local tuning problem of effort ad-
justment.

[17] PSO CART, SWR,
MLR, ANN,
ABE

Proposed Analogy-Based Estimation (ABE) al-
gorithm combined with PSO. Results were eval-
uated with the three real life datasets in terms of
accuracy of the SEE.

[30] PSO CBR methods Proposed optimized weights of CBR methods
with PSO. Results were evaluated with the two
datasets in terms of three quality metrics, i.e.,
mean magnitude of relative error, median mag-
nitude of relative error and Pred(0.25).

[2] PSO UCP, TPA PSO applied to UCP and TPA to reduce the dif-
ference between actual and predicted effort. Re-
sults were evaluated with the cases from two pa-
pers and compared regarding UCP or TPA.

[22] PSO SEE models Proposed algorithm that applies fuzzy logic to
obtain uncertainty in EE and PSO for param-
eters’ tuning. Results were evaluated with ten
NASA software projects on the basis of the VAF,
MARE, and VARE.

[20] PSO COCOMO Proposed algorithm for COCOMO parameters’
tuning using multi-objective PSO. Results were
evaluated with Magnitude of relative error and
prediction level.

* ANN–Artificial Neural Network; CBR–Case-Based Reasoning; MLR–Multiple regression;
RTM–Regression Towards the Mean; SWR–Stepwise Regression; UCP–Use Case Points; TPA–
Test Point Analysis; VAF–Variance accounted For; MARE–Mean Absolute Relative Error;
VARE–Variance Absolute Relative Error
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Table 4 Overview of the SI algorithms used for some other (SD, R) software development problems

Ref Base Compa- Remarksalg. red to
[25] ACO IEA SD problem. Proposed multi-objective ACO search steered

jointly by an adaptive model that combines subjective and
objective measures. Results were evaluated by the experts.

[1] PSO AHP R problem. Proposed method for optimization of the project
duration by using a current optimal risk factor with PSO.
Results were evaluated with ten agile software development
projects.

* AHP–Analytic Hierarchy Process

5 Future paths

Although the research in the software development area was more focused on the
GA algorithms in the past, some problems arise regarding the GA fundamental
phases. According to the authors in [10], the most obvious problems using GA are
crossover and mutation operations, especially in the NRP when considering restric-
tions. Therefore, researchers try to find some other ways to solve software devel-
opment problems. Recently, research using SI algorithms for software development
problems has increased. Nevertheless, there are still some challenges that must be
addressed.

One of the most significant problems is test data. The optimal way is to use data
that were obtained from a real-life scenario, but we often do not have such access.
Therefore, online repositories should be prepared with multiple projects. For each
project, parameters should be defined, such as the number of iterations, require-
ments, dependencies between requirements, planned vs. actual software develop-
ment process (can also be in the form of a Burndown chart). Furthermore, projects
could be classified by difficulty, e.g., projects with multiple dependencies are harder
to solve than those with fewer. If real-life data could not be obtained, a dataset gen-
erator for the systematic generation of instances should be provided, as was also
highlighted by the authors in [8].

Benchmarks for each project could be defined if we refer to repositories. With
such benchmarks, we could facilitate the work of researchers who propose some
novel algorithm and want to check given solutions briefly.

As far as the algorithms themselves are concerned, other SI algorithms should
be applied to the already mentioned problems. After that, a study can be conducted
with an emphasis on which of the SI algorithms performed the best for the specific
software development problem. Moreover, it would also be sensible to check var-
ious hybridization of the SI algorithms, as was pointed out by Kuhat and Thi My
Hanh [19]. With hybridization, we can take advantage of the powerful features of
more than one individual algorithm and find potentially better solutions.
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A subfield worth exploring is also class distribution skews and underrepresented
data in software defect prediction [6].

6 Conclusion

Agile software development is present in many software development companies
worldwide. Software companies make use of various agile methods to improve the
productivity of teams and write better code with fewer bugs. Recently, some re-
searchers even improved these methods by combining them with artificial intelli-
gence methods.

In this paper, we made a short overview of swarm intelligence algorithms that are
applied within the agile software development field. The systematic outline shows
that swarm intelligence methods are beneficial for solving agile software develop-
ment tasks. In line with this, we can expect more solutions that are based on swarm
intelligence algorithms in the future.
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