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Abstract. The rapid growth of data and the need for its proper analy-
sis still presents a big problem for intelligent data analysis and machine
learning algorithms. In order to gain a better insight into the problem
being analyzed, researchers today are trying to find solutions for reduc-
ing the dimensionality of the data, by adopting algorithms that could
reveal the most informative features out of the data. For this purpose, in
this paper we propose a novel feature selection method based on differ-
ential evolution with a threshold mechanism. The proposed method was
tested on a phishing website classification problem and evaluated with
two experiments. The experimental results revealed that the proposed
method performed the best in all of the test cases.
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1 Introduction

Big data, Blockchain, Internet-of-Things (IoT), and Data Science are just a few
buzzwords that depict the modern technological world. All of them are linked
with an amount of data that is rapidly increasing every day. At present, some
influential people in the world say that data is the new oil. Interestingly, data is
not useful unless it is explored with methods that are tailored to wards knowledge
discovery.

There are currently numerous methods for knowledge discovery of data, e.g.,
classification, association rule mining, and clustering. Classification problems
are commonly solved by machine-learning algorithms where the first step is data
pre-processing. Data pre-processing is considered to be the hardest and most
complex step in the whole machine learning ecosystem. Here, we are confronted
with data that will play a role in the following steps of a pipeline. Sometimes
data can be very ugly, such as in cases of missing data, non-standardized data,
etc. whilst, sometimes even raw data that is well collected can be problematic.
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But what happens if the data that we want to analyze consists of hundreds of
instances where each of those instances has thousands, or tens of thousands, of
features? Such high-dimensional data constitutes a serious problem for modern
machine-learning algorithms because of the so-called curse of dimensionality. To
overcome such a problem, it is necessary to find a way to reduce the number of
features. Generally, two techniques are often used: feature selection and feature
extraction. The latter creates new variables as a combination of others to reduce
the dimensionality, while feature selection works by removing features that are
not relevant or are redundant [1].

Feature selection (FS) can also be modeled as an optimization problem. How-
ever, the biggest problem is the significant time complexity. On the other hand,
in order to tackle this problem, researchers have recently utilized some stochas-
tic population-based nature-inspired algorithms that can find pseudo-optimal
solutions in real-time [2]. There exist various feature selection methods that are
based on stochastic population-based nature-inspired algorithms [3,9,12].

Fister et al. have recently proposed a new self-adaptive differential evolution
with a threshold mechanism for feature selection. The authors introduced a new
threshold mechanism which extends the basic self-adaptive differential evolution
by adding another feature threshold and thus mechanically control the pres-
ence/absence of a particular feature in the solution [2]. In this way, the optimal
threshold as well as the optimal features are searched for during the optimization
process. Inspired by previous studies [2], here we apply a threshold mechanism
in canonical differential evolution [8] as well as apply proposed methods on a
phishing website classification.

Altogether, the main contributions of this paper can be summarized as fol-
lows:

– a novel differential evolution for feature selection where a threshold mecha-
nism (DEFSTH) is proposed,

– the proposed method is evaluated on a phishing dataset, and
– the performance comparison study is conducted on the most commonly used

conventional classifiers.

The structure of this paper is as follows. Section 2 outlines the fundamentals
of the proposed DEFSTH method, which is later tested by the experiment pre-
sented in Sect. 3. Section 4 depicts the results, while Sect. 5 concludes the paper
and outlines directions for future work.

2 The Differential Evolution for Feature Selection
with a Threshold Mechanism

A proposed differential evolution with a threshold mechanism for feature selec-
tion (DEFSTH) extends the Differential Evolution (DE) algorithm with thresh-
old mechanism and utilizes it for feature selection. The method is explained in
detail in the following subsections. Subsection 2.1 comprises steps made in the
initialization phase, while the evaluation process of the method is covered in
Subsects. 2.2 and 2.3.
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2.1 Initialization

In the initialization phase of the method, the following parameters are set: the
lower (Lower) and upper (Upper) bounds of the search space, the threshold
(TH), the population size (NP ), the number of function evaluations (nFES),
the scaling factor (F ), the crossover rate (CR), and the number of folds (k).
Those parameters together with the initialization process of individuals are pre-
sented in detail in Subsect. 2.2.

2.2 Differential Evolution with Feature Selection

The core of the method DEFSTH is explained in detail in the following two
subsections. Subsection 2.2 presents the basics of the DE algorithm while Sub-
sect. 2.2 defines the FS problem.

Fundamentals of Differential Evolution. Differential Evolution is an evo-
lutionary algorithm used widely in solving many combinatorial, continuous, as
well as real-world problems. DE was proposed by Storn and Price in 1997 [8]. A
population in DE consists of individuals that are represented as real-value-coded
vectors representing the candidate solutions:

x(t)
i = (x(t)

i,1, . . . , x
(t)
i,n), for i = 1, . . . ,NP , (1)

where each element of the solution is in the interval x(t)
i,1 ∈ [x(L)

i , x
(U)
i ], and x

(L)
i

and x
(U)
i denote the lower and upper bounds of the i-th variable. The DE is

composed of three variation operators, i.e., mutation, crossover, and selection.
Mutation in DE is expressed as follows:

u(t)
i = x(t)

r1 + F · (x(t)
r2 − x(t)

r3 ), for i = 1, . . . ,NP , (2)

where r1, r2, r3 are randomly selected values in the interval [1 . . .NP ].
Crossover in DE is expressed as follows:

w
(t+1)
i,j =

{
u
(t)
i,j randj(0, 1) ≤ CR ∨ j = jrand ,

x
(t)
i,j otherwise,

(3)

Selection in DE is expressed as:

x(t+1)
i =

{
w(t)

i if f(w(t)
i ) ≤ f(x(t)

i ),
x(t)
i otherwise .

(4)

Feature Selection Mechanism. In order to apply the FS mechanism into DE,
some modifications of the latter were necessarily introduced.

Individuals in the DEFSTH method are represented as a vector containing
real values:

x(t)
i = (x(t)

i,0, . . . , x
(t)
i,M ,TH (t)

i ), (5)



14 L. Brezočnik et al.

for i = 0, . . . ,NP , where each feature x
(t)
i,0 for i = 0, . . . , n is drawn from the

interval [0, 1]. TH (t) determines if the corresponding feature is present or absent
in the solution. This mapping is expressed as follows:

a
(t)
i,j =

{
0, if x(t)

i,j ≤ TH (t)

1, otherwise,
(6)

Vector ai presents a matrix, determining the presence or absence of the observed
j-th feature in the i-th solution. Let us mention that value 1 means that the
feature is present, while the value 0 means that the feature is absent in the
solution.

There is a theoretical chance that vector ai would have only zero values,
meaning that no feature is selected. If such a marginal case occurs, the proposed
method returns the maximum value of the fitness function of that individual,
i.e., 1.

2.3 Fitness Function Evaluation

To evaluate the fitness value of each solution produced by DEFSTH, we utilized
the Logistic Regression (LR) classifier applying the Limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS or LM-BFGS) [5] optimization algorithm
with the following settings: Maximum iterations (max iter) was set to 100, tol-
erance for stopping criteria to tol = 10−4, and inverse of regularization strength
C = 1.0.

The evaluation of the fitness function was conducted using the Logistic
Regression classifier calculating the accuracy against the test subset of the initial
training set and can be formally expressed as presented in Eq. (7), where test acc
stands for the previously mentioned calculated accuracy. Given the nature of
the DE algorithm, which is basically designed to search for the global minimum,
we are converting the problem of searching the best-evaluated individual using
fitness function, to the problem of searching for the global minimum via the
subtraction of the accuracy from a value of 1.

f(test acc) = 1 − test acc (7)

The fitness function evaluation is performed for each produced individual
until the stopping criteria, in our case, the nFES, is reached.

3 Experiment

The experimental approach was utilized to show the performance of the pro-
posed DEFSTH method on a dataset presented in detail in Subsect. 3.2. How
the experiment was carried out along with the evaluation method and metrics
are shown in Subsect. 3.3. In the following Subsection, the used setup is explicitly
listed.
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The method was implemented in the Python programming language where
two external libraries were used, i.e. NiaPy [10], a micro-framework for building
nature-inspired algorithms, and Scikit-learn [7], a Python module integrating a
vast number of machine-learning algorithms.

3.1 Setup

The experiment was conducted using a quad-core Intel Core i7-6700 CPU with
a base clock speed at 3.4 GHz and 16 GB of DDR4 memory, running the Linux
Mint 19 operating system.

To initialize the DE algorithm, the following optimal parameter settings were
manually determined after an extensive tuning of parameters. The population
size NP was set to 40, the number of function evaluations nFES was set to 1000,
the scaling factor F and crossover rate CR were set to 0.5 and 0.9, respectively.

3.2 Test Data

For this experiment, we composed a dataset on our own. Using the Phishtank
website [6], we collected a list of 30,647 community-confirmed URLs of phishing
websites and 58,000 legitimate website URLs. The legitimate URLs are gathered
from a list of community-labeled and organized URLs containing the objectively
reported news and top Alexa ranking websites and are thus legitimate. Using a
total of 88,647 URLs, we extracted mostly address-bar based and domain-based
features, extracting a total of 111 features, without the target class (phishing or
legitimate).

In order to extract the previously mentioned address-bar based features, we
performed a count of special characters or symbols of different parts of a URL
such as the whole URL, domain part of the URL, the parameters part of the
URL, etc. More information about the dataset is available at the URL [11].

3.3 Evaluation Method and Metrics

To exhaustively evaluate the performance of the proposed DEFSTH method,
we conducted an evaluation using three predictive performance measures: the
accuracy (ACC), F1 score and area under the ROC curve (AUC). The accuracy
measures the ratio of correctly classified website instances regardless of their
class, while the F1 score presents a harmonic mean of the precision and recall,
averaged over all decision classes, whereas precision refers to the positive predic-
tive value and recall refers to the true positive rate. And the aggregate measure
of performance across all possible classification thresholds is presented by an
AUC metric.

To objectively evaluate the performance of the proposed DEFSTH method
and compare the performance against the conventional classification methods,
we conducted a gold standard 10-fold cross validation [4] procedure. The 10-fold
cross validation devises a given dataset into train and test sets at a ratio of 90:10.
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In the same manner, the procedure is repeated for a total of 10 times, each time
using a different test set for validation.

In the first experiment, we measured the performance of Logistic Regression,
Naive Bayes (NB), k -Nearest-Neighbors (KNN), Decision Tree (DT) and Mul-
tilayer Perceptron (MLP) classifiers without any feature selection utilization or
any kind of pre-processing. Also, while conducting the second experiment, mea-
suring the performance of the proposed DEFSTH method, we used the same
classifiers as in the first experiment to adequately compare the obtained results.
All performance classifiers were initialized with the Scikit-learn [7] default set-
tings.

All the presented results in the following section are averaged ACC, F1 score
and AUC values, obtained on the test websites instances over all runs for each
of 10 folds, if not specified otherwise.

4 Results

A 10-fold comparison of average metrics (ACC, AUC, and F1) with a subset
of features and without a whole set of features, via the DEFSTH method, is
presented in Table 1 and in Fig. 1. The results show that the proposed method
obtained better results in all of the cases. After the utilization of the DEFSTH,
the highest accuracy was achieved by the NB classification method (96.82%),
closely followed by the KNN (96.07%). The accuracies of the remaining classifi-
cation methods DT and MLP were 93.65% and 92.93%, respectively. A similar
description could also be used for the results of AUC and F1. After a utiliza-
tion of the DEFSTH algorithm, NB again performed the best in both cases, by
obtaining results of 96.38% and 95.38% for AUC and F1, respectively.

Table 1. Comparison of average accuracies, areas under the curves and F1 scores,
conducted 10-fold, with and without the utilization of DEFSTH.

Metrics ACC [%] AUC[%] F1[%]

Logistic Regression Without FS 92.06 ± 0.42 92.03 ± 0.42 89.07 ± 0.64

DEFSTH 92.3 ± 1.91 92.1 ± 2.33 89.12 ± 2.79

Naive Bayes Without FS 92.17 ± 0.36 91.80 ± 0.35 88.89 ± 0.48

DEFSTH 96.82 ± 0.21 96.38 ± 0.25 95.38 ± 0.31

k-Nearest Neighbors Without FS 84.29 ± 0.30 79.22 ± 0.42 73.43 ± 0.62

DEFSTH 96.07 ± 0.51 95.54 ± 0.62 94.29 ± 0.75

Decision Tree Without FS 87.0 ± 0.60 89.45 ± 0.43 83.82 ± 0.62

DEFSTH 93.65 ± 0.32 92.96 ± 0.23 90.81 ± 0.32

Multilayer Perceptron Without FS 88.06 ± 0.22 86.56 ± 0.28 82.55 ± 0.34

DEFSTH 92.93 ± 0.42 92.45 ± 0.44 89.89 ± 0.59
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Fig. 1. Comparison of ACC over 10-fold, with and without utilization of DEFSTH.

As explained in the aforementioned results, LR was exempted since the per-
formance of it was used to evaluate each individual (subset of features) in the
process of the optimization. Thus, the results on the test data, when using DEF-
STH or not, are practically the same, as expected (see row Logistic Regression
in Table 1).

Since the experiment used 10-fold cross-validation, we wanted to see which
features were selected in all of the folds, which in nine of the ten folds, etc.
Feature 100 was chosen in all 10-folds. This feature represents the time (in days)
of domain activation. Six features (3, 18, 19, 20, 40, and 83) were chosen nine
times or in 5.41% of all cases. Those features represent the number of slashes (/)
in the URL, URL length, number of dots (.) in the domain, number of hyphens
(-) in the domain, number of dots (.) in the directory, and number of “and” signs
(&) in the parameters. In eight out of ten folds, again six features were selected
(23, 34, 41, 42, 47, and 106). Those features represent the number of question
marks (?) in the domain, number of dollar signs ($) in the domain, number of
hyphens (-) in the directory, number of underlines ( ) in the directory, number
of “and” signs (&) in the directory, and is a site that has a valid TLS/SSL
Certificate.

Features that were never selected are features 11 and 101, representing
Autonomous system (AS) number and the time (in days) of the domain expira-
tion, respectively.

5 Conclusion

In this work, we proposed a novel method based on DE with a threshold mecha-
nism for FS. Two experiments were conducted using a phishing dataset, to assess
its performance. The findings show that the proposed method performed best
in all of the test cases and extracted highly informative features.

Based on these encouraging results, we plan to extend our research, apply
the DEFSTH method to various problems including the datasets with multi-
ple classes. Since the proposed method is implemented modularly, we plan to
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extend it further and modify it with a weighted fitness function or different
algorithms, such as particle swarm optimization, bat algorithm, firefly algorithm,
etc. Moreover, besides applying conventional classification methods, as we did
in our experiment, we also plan to utilize ensemble classification methods such
as Random Forest, Bagging, Adaptive Boosting, Gradient Boosting, etc.
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nian Research Agency (Research Core Funding No. P2-0057).
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10. Vrbančič, G., Brezočnik, L., Mlakar, U., Fister, D., Fister Jr., I.: NiaPy: python
microframework for building nature-inspired algorithms. J. Open Source Softw. 3
(2018). https://doi.org/10.21105/joss.00613

11. Vrbančič, G.: Phishing dataset (2019). https://github.com/GregaVrbancic/
Phishing-Dataset. Accessed 23 May 2019
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