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Abstract—Nowadays, cooperative game theory has been ap-
plied to many domains of human activities. In this study, the
cooperative game concept needed for calculating Shapley value
is used in solving global optimization. Precisely, the marginal
contribution that an agent carries by joining a coalition is
calculated as an increase in population diversity of coalition.
This concept is incorporated into differential evolution and its
self-adaptive variants jDE in order to show that distributing
the monolithic population of solutions into more coalitions and
their parallel evolution can improve the results of the original
algorithms.

Index Terms—game theory, cooperative games, multiagent
systems, differential evolution

I. INTRODUCTION

Game theory refers to the methodology of using mathe-
matical tools to model and analyze situations of interactive
decision-making [1]. Several decision makers (also players)
play the game with different goals, and the decisions of each
affects the outcome of all. The founder of this theory was
John von Neumann [2] in 1944. Nowadays, foundations of this
theory are applied in sciences, like theoretical economics [3],
networks [4], political science [5], and biology [6].

Game theory deals with two types of games: (1) strategic
(also non-cooperative), and (2) coalition (also cooperative)
games. In strategic games, each player endeavors to achieve
the most desired outcome with regard to his/her preferences,
while, in the coalition games, the same results are achieved
with stipulation between players to enforce the cooperative
actions. Thus, the players act self-interested in the former case,
and similar, as social beings, in the latter [7].

The study is focused on the coalition games, where there
are two of the most important solution concepts: (1) core [8],
and (2) Shapley value [9]. The former concept determines
the conditions for the stability of each coalition, while the
latter presents a method for fair sharing of the outcome,
wherein the expected payoff for each player depends on his/her
participation in the game.

The purpose of the paper is to show that the coalition game
concepts can be applied to global optimization. In our study,
Differential Evolution (DE) [10] and its self-adaptive variant
jDE [11] are used for solving these kinds of problems. Both
algorithms belong to a family of stochastic population-based
nature inspired Evolutionary Algorithms (EAs) [12]–[16]. Al-
though these are no more the state-of-the-art algorithms, we
selected them in order to show that also the results of the
old algorithms could be comparable with the results of the
best algorithms with properly hybridization. However, this
approach differs slightly from the recently trends, where the
so called new state-of-the-art algorithms have been developed
to overcome the results of the current best algorithms in global
optimization by simply modifying their parameter setting.

In the sense of coalition games, each individual in a popula-
tion can be considered as an autonomous agent (also player).
These agents form different coalitions, where their stability
depends on the fairness of the payoff, accompanied with
connecting the agent to a specific coalition. During formation
of the coalition structure, the rational agents will connect to
those coalitions that offers the highest payoff. On the other
hand, each coalition strives to increase the coalition value
by connecting new, good agents. The increase is expressed
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as the marginal contribution of an agent to the coalition that
represents a basis for Shapley value calculation. In our case,
the marginal contributions are evaluated as increasing the
diversity of the coalition to which the agent is joined. As a
result, a rational agent should connect to the coalition with the
highest increase of population diversity.

Obviously, introducing the coalition structure into DE and
jDE causes dividing their monolithic populations into more
distributed coalitions consisting of variable numbers of agents.
These coalitions evolve simultaneously during the evolutionary
cycle. Consequently, the original DE/jDE, running sequen-
tially, transforms to parallel PDE/jPDE (PEAs), where each
coalition evaluates in parallel.

The CEC-2014 benchmark function suite represents a test
bed for estimating the quality of the developed PEAs. There
is no special reason why this benchmark was used in place of
newer ones. In our opinion, the newer benchmark function
suites (i.e., CEC-2015/17/18) do not bring any additional
difficulties for solving algorithms, and therefore the results
of the optimization could not be different by using another
benchmark.

Due to the limitation of the paper length, functions of di-
mensions D = 10 and D = 30 were taken into consideration.
Comparing the results of the developed PDE/jPDE with their
original counterparts DE/jDE showed the great potential in the
sense of preserving the population diversity and, consequently,
improving the results of the optimization.

The organization of the remainder of this paper is as follows.
In Section II, the basic information needed for understanding
the subject are discussed first. Section III highlights the
coalition game concepts incorporated into DE and jDE. The
section finished with a description of the PEAs. Experiments
and results are subjects of Section IV. The paper concludes
with Section V, where potential directions are also outlined
for future work.

II. BASIC INFORMATION

A. Differential Evolution

DE belongs to the class of stochastic nature-inspired
population-based algorithms and is appropriate for solving
continous, as well as discrete optimization problems. DE
was introduced by Storn and Price in 1995 [10] and, since
then, many DE variants have been proposed. The original DE
algorithm is represented by real-valued vectors and support
operators, such as mutation, crossover, and selection.

In the basic mutation, two solutions are selected randomly
and their scaled difference is added to the third solution, as
follows:

u
(t)
i = x

(t)
r0 + F · (x(t)

r1 − x
(t)
r2 ), for i = 1 . . .NP , (1)

where F ∈ [0.1, 1.0] denotes the scaling factor that scales
the rate of modification, while Np represents the population
size, and r0, r1, r2 are randomly selected values in the
interval 1 . . .Np. Note that the proposed interval of values for
parameter F was enforced in the DE community, although

Price and Storn proposed a slightly different interval, i.e.,
F ∈ [0.0, 2.0].

DE employs a binomial (denoted as ’bin’) or exponential
(denoted as ’exp’) crossover. The trial vector is built from pa-
rameter values copied from either the mutant vector generated
by Eq. (1) or the parent at the same index position laid i-
th vector. Mathematically, this crossover can be expressed as
follows:

w
(t)
i,j =

{
u
(t)
i,j randj(0, 1) ≤ CR ∨ j = jrand,

x
(t)
i,j otherwise,

(2)

where CR ∈ [0.0, 1.0] controls the fraction of parameters
that are copied to the trial solution. The condition j = jrand
ensures that the trial vector differs from the original solution
x
(t)
i in at least one element.
Mathematically, the selection can be expressed as follows:

x
(t+1)
i =

{
w

(t)
i if f(w

(t)
i ) ≤ f(x

(t)
i ),

x
(t)
i otherwise .

(3)

The selection is usually called ’one-to-one’, because trial and
corresponding vector laid on the i-th position in the population
compete for surviving into the next generation. However, the
better will survive according to the fitness function.

Crossover and mutation can be performed in several ways in
DE. Therefore, a specific notation was introduced to describe
the varieties of these methods (also strategies) in general. For
example, ’rand/1/bin’ denotes that the base vector is randomly
selected, 1 vector difference is added to it, and the number
of modified parameters in the trial/offspring vector follows a
binomial distribution.

B. jDE algorithm

In 2006, Brest et al. [11] proposed an effective DE variant
(jDE), where control parameters are self-adapted during the
run. In this case, two parameters, namely, scale factor F and
crossover rate CR are added to the representation of every
individual, and undergo acting the variation operators. As a
result, the individual in jDE is represented as follows:

x
(t)
i = (x

(t)
i,1, x

(t)
i,2, ..., x

(t)
i,D, F

(t)
i ,CR

(t)
i ).

The jDE modifies parameters F and CR according to the
following equations:

F
(t+1)
i =

{
Fl + rand1 ∗ (Fu − Fl) if rand2 < τ1,

F
(t)
i otherwise ,

(4)

CR
(t+1)
i =

{
rand3 if rand4 < τ2,

CR
(t)
i otherwise ,

(5)

where: randi=1,...,4 ∈ [0, 1] are randomly generated values
drawn from uniform distribution in the interval [0, 1], τ1 and
τ2 are learning steps, Fl and Fu are lower and upper bounds
for parameter F , respectively.
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III. COALITION GAME CONCEPTS FOR GLOBAL
OPTIMIZATION

In multiagent interactions, we are usually confronted with
the problem how to divide a set of agents Ag = {1, . . . ,Np}
into subsets of cooperative agents C = {C1, . . . , Cn} (also
called coalitions), where no agent i can earn more if it is joined
to another coalition. Consequently, such coalition division
(also coalition structure formation) is stable, because all agents
are paid fairly, i.e., according to their investment into the
coalition. Formally, the formation of the coalition structure
can be modeled as a coalition game [7]:

G = 〈Ag , v〉, (6)

where
v : 2Ag → R (7)

denotes the characteristic function of the game. Obviously, this
function determines how fair the agent’s outcome is.

A. Marginal contribution of agents

Fair sharing of the outcomes between players of a coalition
game means that each player is paid according to the contri-
bution it brings to a coalition. A Shapley value [1] is one of
the fairest measures for determining these outcomes based on
a marginal contribution calculation. The marginal contribution
of player i to coalition C is expressed as:

δi(C) = v(C ∪ {i})− v(C), (8)

where v(C) represent the characteristic function.
In our study, the marginal contributions are considered as

follows. Let us assume that the permutation π ∈ Π(Np) is
given. Then, the coalitions C are defined as the following
subsets C ⊂ Np:

C = {i ∈ Ag : max δi(C)}. (9)

In other words, each coalition consists of players that ensure
the highest outcome for specific coalition.

B. Characteristic function

The characteristic function v(C) in our study measures the
diversity of coalition I(C) defined as:

I(C) =

√√√√
D∑

j=1

(xk,j − sj)2, for ∀k ∈ C, (10)

where each agent k is represented by a solution vector xk =
{xk,j} for j = 1, . . . , D and vector s = {sj} is the centroid,
expressed as follows:

sj =
1

Np

Np∑

i=1

xi,j . (11)

Indeed, the marginal contribution of agent i to coalition C is
expressed as:

δi(C) = I(C + {i})− I(C), for ∀C. (12)

However, we are interested for those coalition C, where the
marginal contribution is the maximal. Thus, it is expected that
the formed coalition could maintain the highest population
diversity.

C. The proposed parallel DE/jDE

The proposed PDE/jPDE algorithms operate with a popula-
tion of agents i for i = 1, . . . ,Np represented as vectors xi.
These agent are joined to several coalitions, thus forming the
stable coalition structure. Obviously, the agents are joined to
those specific coalitions that increase the diversity of coalition
by this joining the most. Here, the coalition outcome for agent
is calculated as an increasing of the diversity of coalition due
to joining.

The pseudo-code of PEAs is illustrated in Algorithm 1 from
which it can be seen that it consists of two phases:

• forming the coalition structure (FORM COALITION STR-
UCTURE function),

• evolving the arisen coalitions (EVOLVE function).
Let us mention that the first phase is governed by the

rules of coalition game theory, while the second changes the
monolithic EAs into Parallel EAs (PEAs), where the particular
coalitions are evolved in parallel (parfor loop). In the last
phase, the evolution of coalition members is governed by
traditional DE/jDE algorithms.

Forming the coalition structure is presented in Algorithm 2,
from which it can be seen that this is called with three
parameters: coalition set C, maximum number of coalitions
max coal , and actual number of coalitions n coal . During
initialization (INIT COAL STR function), a permutation of
agents π ∈ Π(Np) is generated, where the first max coal
agents are declared as the leaders of the particular coalitions.
At the beginning, when n coal = 0, all leaders of coalitions
are selected randomly. Later, the best n coal agents according
to the fitness function in the last generation become leaders,
while the remaining max coal − n coal agents are selected
from the set of undecided agents randomly. In the real world,
this situation corresponds to the birth of new parties that
emerge typically before elections especially in young democ-
racies.

Then, for each of the remaining non leading agents, the
coalition with the highest diversity of coalition caused by
joining a particular agent to this is determined in the function
CHECK COAL. Next, the agent is joined to the coalition with
the highest increase the diversity of coalition in function
JOIN COAL.

Finally, the algorithm verifies the obtained coalition struc-
ture. Here, two limiting conditions are handled in function
REMOVE UNSTABLE: (1) less agents than the prescribed
threshold are joined to the coalition, and (2) one coalition
predominates all others. In the first case, the members of
inconsistent coalitions are joined with other consistent coali-
tions randomly, while, in the second case, where dictatorship
has arisen, all agents are distributed uniformly into max coal
number of coalitions randomly.
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Algorithm 1 The proposed PEAs

1: procedure PEA(C,max coal )
2: n coal = 0;
3: while termination condition not found do
4: n coal=FORM COALITION STRUCTURE(C,max coal ,n coal );
5: for gen = 1 to max eval do
6: parfor all coal ∈ C do
7: EVOLVE(coal );
8: end parfor all
9: end for

10: end while
11: end procedure

Algorithm 2 Forming the coalition structure

1: procedure FORM COAL STR(C,max coal, n coal)
2: π=INIT COAL STR(C,max coal, n coal); . generate permutation of agents π
3: for all i ∈ π\{∀C∃i ∈ C : f(xi) > f(xj) for j = 1, . . . , |C| ∧ i 6= j} do
4: Cbest=CHECK COAL(i , C);
5: JOIN COAL(i, Cbest );
6: end for
7: n coal=REMOVE UNSTABLE(nAg);
8: return n coal ;
9: end procedure

The PEAs introduce two new parameters: max coal and
max eval. Both parameters have a big impact on the perfor-
mance of the algorithms. They are problem dependent and,
therefore, their optimal setting needs to be found experimen-
tally.

IV. EXPERIMENTS AND RESULTS

The purpose of our experimental work was twofold: (1) to
show that the PDE and jPDE outperform the results of their
original counterpart, and (2) to indicate that the developed
PEAs are good candidates to improve the results of the state-
of-the-art algorithms in the future. In line with this, three test
were performed: (1) determining the best of PDE and jPDE
algorithms, (2) comparing the DE/jDE with their counterpart
PDE/jPDE, and (3) comparing the best of PDE/jPDE with
the original DE, jDE and SADE [17], and the state-of-the-art
algorithms L-Shade and MVMO.

Parameters of DE algorithm during tests were set as follows:
the amplification factor of the difference vector F = 0.9 and
the crossover control parameter CR = 0.5. The same values
of parameters F and CR are used as starting values of the
corresponding parameters F (0)

i and CR
(0)
i for i = 1, . . . ,Np

by the jDE algorithm. However, the new parameters of PEAs
(i.e., max coal and max eval) are unknown in advance
and, therefore, determining their appropriate values stays the
subject of extensive experimental work.

All algorithms in tests generated the results under the same
conditions. This means that they used the same population
size Np = 100, and terminated after the same fitness function
evaluations MAX FE = 10, 000 ·D. The algorithms solved

the CEC-2014 Benchmark function suite consisting of four
classes: unimodal functions, simple multi-modal functions, hy-
brid functions, and composition functions [18]. Two different
dimensions of the functions were taken into consideration, i.e.,
D = 10 and D = 30.

The results of the algorithms were evaluated according to
five standard statistical measures: Best, Worst, Mean, Median,
and StDev values. Then, the quality of obtained results were es-
timated using Friedman non-parametric tests [19]. The Fried-
man test is a two-way analysis of variances by ranks, where the
statistic test is calculated and converted to ranks. The lower the
value of the rank, the better the algorithm [20]. In the Friedman
test, the null hypothesis states that medians between the ranks
of all algorithms are equal. If a null hypothesis of the test is
rejected, the Nemenyi post-hoc test [21] is conducted using
the calculated ranks.

In the remainder of the paper, the configuration of the
PC on which the experiments were conducted is presented
first. Then, the results of the best PDE/jPDE CEC 2014
Benchmark function suite are illustrated. Next, the results of
the comparative study between the traditional EAs and their
parallelized counterparts are depicted in graphs. The analysis
finishes with an additional comparative study, in which the
best algorithms found in the last test are compared with the
state-of-the-art algorithms, like L-Shade and MVMO.

A. PC configuration

All runs were made on an IBM Lenovo using the following
configurations:

1) Processor - Intel Core i5-7400 3.00 GHz × 4
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2) RAM - 8 GB
3) Operating system - Linux Mint 19 Cinnamon

All versions of the tested algorithms were implemented within
the Eclipse Photon CDT Framework.

B. The results of the best run
As mentioned before, the results of the proposed PEAs

depend on the setting of parameters max coal and max eval .
It is expected that a large number of coalitions with smaller
population sizes could investigate the much larger part of
the search space and, therefore, maintain much diversity in
coalition populations.

Therefore, the proper bias between setting the parameters
needs to be found during the experimental work. In line with
this, the first parameter was modified in set max eval ∈
{5, 10, 15, 20, 25, 30, 50, 100}, and the second in intervals
max coal ∈ [2, 10] in steps of one respectively. Consequently,
the total independent runs per PEA was 8 × 9 · 25 = 1800
per problem dimension. Average results according to five
statistical measures and 30 various benchmark functions (i.e.,
5 × 30 = 150) obtained after 25 runs were entered into
Friedman tests, where appropriate ranks of definite variants
of PEA were obtained for the specific max coal values with
regard to the various max eval values. As a result, 9×8 = 72
pairs of potential parameter values are produced for calculation
the same number of ranks. When the ranks were assigned to
each pair and put on z-axis in 3-dimensional space, a rank
landscape is built with max coal put on x-axis and max eval
on y-axis [22]. The rank landscape describes regions with
peaks and valleys, where the best values are denoted by
valleys.

The fitness landscape for the PDE/jPDE algorithms obtained
by optimization of benchmark functions of dimension D =
10 is depicted in Fig. 1, while the same results obtained by
optimization of benchmark functions of dimension D = 30 in
Fig. 2.

Let us mention that each of the mentioned figures are
divided into two graphs with regard to the observed algorithm.

In summary, the following conclusions can be made, when
comparison is performed between the range landscapes de-
picted in Fig. 1:

• The average rank landscape obtained by jPDE is much
more diverse than by PDE.

• PDE produces the best results with the higher values of
the max eval parameter (i.e., max evol = 50).

• The better results obtained by jPDE are obtained either
by smaller number of evolution and smaller number of
coalition (i.e., max eval = 5 and max eval = 10),
or higher valuer of coalitions and higher number of
evaluations max coal = 100.

On the other hand, the following conclusions can be de-
duced from the rank landscape depicted in Fig. 2:

• The rank landscapes formed by both algorithm are diverse
considerably.

• The best results of the PDE were obtained by the maxi-
mum number of evaluations max eval = 25.

• The jPDE variants achieved the best results by the
maximum number of evaluations max eval = 5, while
the setting of this parameter to max eval = 100 has a
negative impact on the results.

In summary, the best parameter settings found during extensive
experimental work is illustrated in Table I. These setting
confirmed our hypothesis set for PDE asserting that the higher
the parameter max eval , the better the results, while the
best parameter setting for the jPDE algorithm depends on the
problem to be solved. However, the optimal setting of the
parameter max eval must be explored experimentally.

TABLE I: The best parameter setting of PEAs.

D
PDE jPDE

max coal max eval max coal max eval
10 4 100 2 100
30 7 100 6 5

The results of the best run of jPDE obtained by optimizing
the CEC 2014 function benchmark suite of dimension D = 10
are illustrated in Table II.

C. Comparative analysis

The purpose of this analysis was twofold: to show that (1)
the PEAs outperform the results of the original EAs, and (2)
the results of the proposed PEAs are comparable with the
results of SADE, and the state-of-the-art algorithms, like L-
Shade and MVMO.

In the first test, the results of two the best PDE/jPDE
algorithms (i.e., PDE1, PDE2, jPDE1, and jPDE2) found in the
last experiment were compared with their original counterparts
DE/jDE by solving the benchmark functions of dimensions
D = 10 and D = 30. In line with this, the average results of
these algorithms obtained after 25 independent runs were en-
tered into Friedman tests. The results of the Nemenyi post-hoc
test that enables a neat presentation of statistical results [21]
are presented in Fig. 3, where the average values of ranks
are depicted for each algorithm together with their confidence
intervals. Two algorithms are significantly different, when their
confidence intervals do not overlap. Indeed, the lower the
average value of ranks, the better the algorithm.

As can be seen from Fig. 3a, the jPDE1 and jPDE2 are
significantly better than the DE and jDE, while the PDE1 and
PDE2 are substantially better than their original counterparts.
In contrast, Fig. 3b does not confirm the results presented in
the last figure, because the jPDEs do not overcome the results
of jDE significantly anymore. Moreover, the results of PDEs
deteriorate significantly. In line with this, our hypothesis (1) is
confirmed only for the results achieved by solving functions
of dimension D = 10.

In the second test, the best results of the PEAs found in the
last experiments were compared with the results of the original
DE/jDE and SADE, and the state-of-the-art algorithm L-Shade
that won the CEC 2014 Competition of global optimization,
and MVMO that was fourth. The results of the comparison
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Fig. 1: Rank landscape obtained by optimizing benchmark functions of dimension D = 10.

 2  3
 4  5

 6  7
 8  9

 10

Number	of	coalitions	(max_coal)
5

10
15

20
25

30
50

100

Number	of	evaluations	(m
ax_eval)

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2

Av
er

ag
e	

va
lu

es
	o

f	r
an

ks

a: PDE variants.

 2  3
 4  5

 6  7
 8  9

 10

Number	of	coalitions	(max_coal)
5

10
15

20
25

30
50

100

Number	of	evaluations	(m
ax_eval)

 1.2

 1.4

 1.6
 1.8

 2

 2.2

 2.4
 2.6

Av
er

ag
e	

va
lu

es
	o

f	r
an

ks

b: jPDE variants.

Fig. 2: Rank landscape obtained by optimizing benchmark functions of dimension D = 30.

are presented in Fig. 4, from which it can be seen that the L-
Shade outperformed the results of the all the other algorithms
by solving functions of dimensions D = 10 and D = 30
significantly.

Although the results obtained by MVMO are significantly
different compared with the results of other algorithms, except
L-Shade, by solving functions of dimension D = 10, this
difference is substantial compared with the jPDE2, when
functions of dimension D = 30 are taken into consideration.
This means that parallelization of DE/jDE algorithms could
be the right direction for the future.

V. CONCLUSION

Coalition games have been found to be a successful ap-
plication in many domains of human activity. The coalition
game theory studies the cooperative interactions of agents,
and are inspired by social sciences like sociology, politics,

economics, etc. The concepts of this theory are rarely used
in global optimization. This study explores the concept of the
marginal contribution of an agent to a coalition representing
a basis for calculation of Shapley value in order to solve the
global optimization problems. Precisely, this concept was in-
corporated into the original DE and jDE, where the agents are
joined to those coalitions that ensure the maximum increase
of the diversity of coalition. Thus, a parallel PDE and jPDE
were proposed in place of monolithic DE and jDE algorithms,
where the coalition populations were evaluated in parallel.

The proposed PEAs were applied for solving the CEC 2014
Benchmark function suite. The results of the optimization
showed that the proposed PDE/jPDE algorithms improved the
results of their original counterparts by solving functions of
dimension D = 10 and the proposed jPDE by dimension
D = 30 on the one hand, and they exposed the potential to
outperform the results of the state-of-the-art algorithms in the
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TABLE II: The best results of the jPDE obtained by optimization of CEC 2014 functions of dimension D = 10.

Func. Best Worst Mean Median StDev
1 1.13687E-12 5.16408E-07 2.60949E-08 1.23251E-10 1.03657E-07
2 0 0 0 0 0
3 0 0 0 0 0
4 4.05294E-11 34.7803 17.2148 4.33541 17.2768
5 20.0422 20.1458 20.0935 20.0886 0.0298182
6 0 1.05608 0.115096 7.95808E-13 0.319003
7 0 0.0401143 0.0158983 0.0147001 0.0117637
8 0 0 0 0 0
9 4.40843 8.08253 6.39023 6.32415 1.1115
10 0 12.0505 2.56008 0.0624544 4.84761
11 246.982 597.945 416.816 436.646 105.035
12 0.246625 0.528824 0.376199 0.383271 0.0756106
13 0.0887392 0.210901 0.139742 0.136434 0.0277555
14 0.103476 0.239441 0.169332 0.161447 0.0358163
15 0.618336 1.15524 0.947983 0.997932 0.161996
16 1.69286 2.75919 2.33281 2.34355 0.257183
17 0.0133394 42.2597 14.3346 9.55432 13.6062
18 0.198238 2.81869 1.33436 1.40298 0.807717
19 0.204647 0.736764 0.453359 0.436423 0.151633
20 0.0727562 0.567027 0.220154 0.182906 0.117492
21 0.0492552 1.15386 0.328501 0.281254 0.246972
22 0.0571494 4.46905 0.658595 0.247987 1.04787
23 329.457 329.457 329.457 329.457 2.32062E-13
24 109.957 115.878 112.989 112.718 1.64837
25 108.709 201.32 157.144 138.358 37.9708
26 100.086 100.204 100.143 100.139 0.0293799
27 1.55151 313.034 98.0323 2.40606 142.569
28 368.85 380.627 373.509 369.371 5.11153
29 221.542 223.748 222.409 222.427 0.730869
30 458.33 499.437 469.118 462.835 12.1074

a: D = 10. b: D = 30.

Fig. 3: Comparative analysis of DE/jDE with PDE/jPDE.

future.

At the moment, the proposed PEAs preserve only the leaders
of a particular coalition by forming a new coalition structure.
As a future direction, it would be interesting to preserve also,
for instance, the 25 %, 50 %, and 75 % of the best coalition
members. However, the results obtained by optimization of
function of higher dimensions (e.g., D = 50) would also stay

a challenge for the future.
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