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Abstract. Novelty search ensures evaluation of solutions in stochas-
tic population-based nature-inspired algorithms according to additional
measure, where each solution is evaluated by a distance to its neigh-
borhood beside the fitness function. Thus, the population diversity is
preserved that is a prerequisite for the open-ended evolution in evolu-
tionary robotics. Recently, the Novelty search was applied for solving the
global optimization into differential evolution, where all Novelty search
parameters remain unchanged during the run. The novelty area width
parameter, that determines the diameter specifying the minimum change
in each direction needed the solution for treating as the novelty, has a
crucial influence on the optimization results. In this study, this parameter
was adapted during the evolutionary process. The proposed self-adaptive
differential evolution using the adaptive Novelty search were applied for
solving the CEC 2014 Benchmark function suite, and the obtained results
confirmed the usefulness of the adaptation.
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1 Introduction

Two inspirations from the nature have been had the biggest influence on devel-
opment of the stochastic nature-inspired population-based algorithms: (1) Dar-
winian evolution [1], and (2) behavior of some animals, or insects living in
swarm [2]. The former has been led to emerging the Evolutionary Algorithms
(EAs) [3], while the latter to Swarm Intelligence (SI) based algorithms [4]. Tra-
ditionally, these algorithms have been developed on disembodied computer sys-
tems, where there was no interaction between the system and the environment.
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Recently, both families of algorithms have been ported on the specific hardware,
where act as autonomous agents devoted for solving the problems as delegated
by their developers. These agents operate similar as human beings in society,
where they need to cooperate, coordinate, and negotiate between each other in
order to solve the problem [5]. This porting has been caused development of the
so-called Evolutionary Robotics (ER), and Swarm Robotics (SR) [6].

New problems have been emerged by embedding the EAs and SI-based algo-
rithms into hardware. Let us mentioned only two the most important ones: (1)
selection pressure, and (2) fitness function evaluation. The selection pressure
causes losing the population diversity that is a prerequisite for the open-ended
evolution in ER and SR [13]. On the other hand, the fitness function in ER and
SR cannot be evaluated in the traditional three-step evaluation chain genotype-
phenotype-fitness. Due to the interaction of agent with environment, the fit-
ness function must be evaluated according to the more suitable behavior that
it has in the relation with the environment. Consequently, the fitness function
is now calculated in a behavior space. As a result, the four-step evolution chain
genotype-phenotype-behavior-fitness has replaced the three-step in ER and SR.

Indeed, two advantages in the Evolutionary Computation (EC) [19–22] enable
ER and SR community to prevent the loosing of population diversity success-
fully [12]: (1) Multi-Objective Evolutionary Algorithms (MOEA) [14], and (2)
Novelty Search (NS) [10]. The former technology allows to evaluate the same
solution according to two or more criteria, while the latter to preserve the so-
called novelty solution that will normally be eliminated by the fitness function.
In more detail, the NS evaluate the solution in genotype space, where the dis-
tance from the neighborhood solutions is calculated. However, the solution is
adopted as novelty one, when the distance is larger than those specified by the
novelty area width parameter. In other words, the NS estimates the solutions
according the two criteria (i.e., fitness function, and distance) and thus changes
the traditional EA (or SI-based algorithm) into MOEA.

Interestingly, the operations of the NS are guided by two parameters: (1)
the neighborhood size, and (2) the novelty area width needed for calculating
the behavior distance metric. In NS for global optimization, these parameters
remained unchanged during the evolutionary run until now [7,8]. According to
Eiben [3], a fitness landscape of the particular problem is changed during the evo-
lutionary search process. Therefore, changing the parameter setting during the
run has potential of better adjusting the algorithm to the problem. Indeed, there
are three types of parameter control in EC [3]: (1) deterministic, (2) adaptive,
and (3) self-adaptive. Deterministic parameter control means that the parame-
ters are changed according to some deterministic rule during the evolutionary
search. In adaptive parameter control, a some feedback from the search process
influences on the frequency and the magnitude of change of the problem vari-
ables, while the parameters are stored into representation of individuals together
with problem variables and undergo the operations of variation operators dur-
ing the self-adaptive parameter control. In our paper, the adaptive control of
the novelty area width is applied, because the proper value of this parameter is
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not known in advance, in the one hand, and because it is the most crucial for
performing of the NS on the other.

The adaptive NS (ANS) was implemented within the self-adaptive Differen-
tial Evolution (jDE) of Brest et al. [16] and applied for solving the CEC 2014
Benchmark function suite. The purpose of our experimental work was to show
that the ANS into jDE (AnjDE) can improve the results of the nDE and njDE
variants developed by Fister et al. [7,8]. Additionally, the achieved results can
be comparable also with the state-of-the-art algorithms, like L-Shade [17] (the
winner of the CEC-2014 Competition on Real-Parameter Single Objective) and
MVMO [18].

The structure of the remainder of the paper is as follows. Section 2 refers
to highlight the background information. A description of the adaptive AnjDE
are presented in Sect. 3. The results of experiments are illustrated in Sect. 4.
Summarizing of the performed work is the subject of the last section.

2 Background Information

This section presents a background information needed for understanding the
subject that follows. In summary, this section captures the following topics: (1)
differential evolution, (2) self-adaptive evolutionary evolution, and (3) Novelty
search. In the remainder of the paper, the mentioned topics are illustrated in
details.

2.1 Differential Evolution

DE belongs to the class of stochastic nature-inspired population-based algo-
rithms that is appropriate for solving continuous as well as discrete optimization
problems. DE was introduced by Storn and Price in 1995 [15] and since then
many DE variants have been proposed. The original DE algorithm is represented
by real-valued vectors that undergo operations of variation operators, such as
mutation, crossover, and selection.

In the basic mutation, two solutions are selected randomly and their scaled
difference is added to the third solution, as follows:

u(t)
i = x(t)

r0 + F · (x(t)
r1 − x(t)

r2 ), for i = 1 . . .Np, (1)

where F ∈ [0.1, 1.0] denotes the scaling factor that scales the rate of modification,
while Np represents the population size and r0, r1, r2 are randomly selected
values in the interval 1 . . .Np. Note that the proposed interval of values for
parameter F was enforced in the DE community.

DE employs a binomial (denoted as ‘bin’) or exponential (denoted as ‘exp’)
crossover. The trial vector is built from parameter values copied from either the
mutant vector generated by Eq. (1) or parent at the same index position laid
i-th vector. Mathematically, this crossover can be expressed as follows:

w
(t)
i,j = u

(t)
i,jx

(t)
i,j (2)
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where CR ∈ [0.0, 1.0] controls the fraction of parameters that are copied to the
trial solution. The condition j = jrand ensures that the trial vector differs from
the original solution x(t)

i in at least one element. Mathematically, the selection
can be expressed as follows:

x(t+1)
i =

{
w(t)

i if f(w(t)
i ) ≤ f(x(t)

i ),
x(t)

i otherwise .
(3)

The selection is usually called ‘one-to-one’, because trial and corresponding vec-
tor laid on i-th position in the population compete for surviving in the next
generation, where the better according to the fitness function will survive.

Mutation can be performed in several ways in DE. Consequently, a specific
notation was introduced to describe the varieties of these methods (also mutation
strategies), in general. For example, ‘rand/1/bin’ denotes that the base vector is
randomly selected, 1 vector difference is added to it, and the number of modified
parameters in the trial/offspring vector follows a binomial distribution.

2.2 jDE Algorithm

In 2006, Brest et al. [16] proposed an effective DE variant (jDE), where control
parameters are self-adapted during the run. In this case, two parameters namely,
scale factor F and crossover rate CR are added to the representation of every
individual and undergo acting the variation operators. As a result, the individual
in jDE is represented as follows:

x (t)
i = (x(t)

i,1, x
(t)
i,2, ..., x

(t)
i,D, F

(t)
i ,CR(t)

i ).

The jDE modifies parameters F and CR according to the following equations:

F
(t+1)
i =

{
Fl + rand1 ∗ (Fu − Fl) if rand2 < τ1,

F
(t)
i otherwise ,

(4)

CR
(t+1)
i =

{
rand3 if rand4 < τ2,

CR
(t)
i otherwise ,

(5)

where: randi=1...4 ∈ [0, 1] are randomly generated values drawn from uniform
distribution in interval [0, 1], τ1 and τ2 are learning steps, Fl and Fu lower and
upper bound for parameter F , respectively.

2.3 Novelty Search

NS measures the distance between each individual in a population and its k-th
nearest neighbors in behavior space, in other words [10]:

ρ(x) =
1
k

k∑
i=1

dist(x,µi), (6)
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where µi is the i-th nearest neighbor of x with respect to the behavior distance
metric dist.

Parameter k is a problem dependent, and must be determined by the devel-
oper experimentally. However, the same is also valid for selecting the distance
metric. In general, the NS is weakly defined and the question, how to tailor
the search so that the results are as good as possible, is left to the developer’s
criterium [11].

3 Adaptive Novelty Search into jDE

In our study, Adaptive NS (ANS) is applied into jDE. In line with this, two
main modifications need to be performed: (1) implementation of the ANS, and
(2) adjusting a jDE population scheme accordingly. Here, the same DE/jDE
population scheme, as described in Fister et al. [7,8], was used. Therefore, the
paper is focused on the description of the ANS. The pseudo-code of the ANS is
illustrated in Algorithm1.

Note that the function ρ(x) in Algorithm 1 calculates the average value of
the behavior distance metric in neighborhood. The behavior distance metric dist
in ANS is defined as follows:

dist(xi,xj) =

{
d(xi,xj)

σ
(t)
sh

, d(xi,xj) > σ
(t)
sh ,

0, otherwise,
(7)

where d(xi,xj) denotes a Euclidean distance between vectors xi and xj and σ
(t)
sh

determines the minimum distance needed for recognizing the novelty solution.
Let us mention that the σ

(t)
sh is not remained unchanged during the evolutionary

search as proposed in previous studies, but this is modified according to the
following equations:

σ
(t)
sh = K · I(t)c . (8)

where K is a user-defined constant and I
(t)
c represents an inertia moment from

mass center expressed as:

I(t)c =
Np∑
i=1

D∑
j=1

(xi.j − cj)2. (9)

In Eq. (9), vector c = {cj} represents the mass center expressed as:

c
(t)
j =

1
Np

Np∑
i=1

xi,j , for j = 1, . . . , D. (10)

The constant K in Eq. (8) allows users to increase of decrease the value of novelty
area width. The adaptation process is launched simultaneously with the ANS in
the sense of the learning rate parameter τ3 ∈ [0, 1]. The ANS process is controlled
with additional parameters replacement size R ∈ [1,Np] that limits the number
of novelty solutions.
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Algorithm 1. Adaptive Novelty Search within the jDE algorithm
1: procedure Novelty Search
2: A = {∃µi : f(wi) ≤ f(xj) ∧ i �= j}; // set of survivor solutions
3: B = {∃xi : f(wi) > f(xj) ∧ i �= j}; // set of eliminated solutions
4: if |A| < k then // number of survivor solutions less than the neighborhood?
5: A = A ∪ B; // increases the neighborhood set to the whole population
6: end if
7: ∀xi ∈ B : ∃N (xi) : µj ∈ A ∧ xi �= µj ∧ |N (xi)| ≤ k; // select k-nearest

neighbors
8: ∀xi ∈ B : ρ(xi); // calculate their novelty values adaptively
9: C = {∀(xi,xj) ∈ B : max |ρ(xi) − ρ(xj | ∧ i �= j ∧ |C| ≤ R};

10: end procedure

4 Experiments and Results

The purpose of our experimental work was to show that (1) the ANS improves
the results of the original DE/jDE and the proposed nDE/njDE, as well as to
indicate that (2) they are also comparable with those obtained by the MVMO
and L-Shade, the winner of the CEC 2014 Competition on global optimization.
In line with this, the CEC 2014 Benchmark function suite was used as a test
bed. This suite consists of 30 shifted and rotated functions that present the
big challenge for the majority of the optimization algorithms. Due to the paper
length, this study was focused on the functions of dimension D = 10.

Table 1. Parameter setting of algorithms in tests.

Alg. F CR τ1,2 σsh |N | τ3 R

DE 0.5 0.9 n/a n/a n/a n/a n/a

jDE 0.5 0.9 0.1 n/a n/a n/a n/a

nDE 0.5 0.9 n/a 50 10 0.1 50

njDE 0.5 0.9 0.1 5 10 0.1 5

The parameter settings of the original DE/jDE and proposed nDE/njDE are
presented in Table 1. All algorithms in tests were run with population size of
Np = 100, while 25 independent runs were conducted per each algorithm. The
results were measured according to five statistical measures: minimum, maxi-
mum, mean, median, and standard deviation. These values obtained by opti-
mization of 30 particular functions were accumulated into statistical classifiers
and entered into Friedman non-parametric tests [9].

To prove our hypotheses, two tests were conducted. The aim of the first was
to show that the AnjDE improve the results of the traditional DE/jDE and
proposed nDE/njDE. In line with this, the constant K was varied in the interval
[0.009, . . . , 0.01] in steps of 0.001, in the interval (0.01, . . . , 0.1] in steps of 0.01,
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and in the interval (0.1, . . . , 0.6] in steps of 0.1. In line with this, 16 instances of
the AnjDE algorithm were obtained for each of the six values of the neighborhood
size |N | ∈ {5, 10, 15, 20, 30, 50} and the replacement size R ∈ {1, 2, 5, 10}. Thus,
the 16 × 6 × 4 × 25 = 9, 600 independent runs were conducted, from which
the best AnjDE instance (i.e., AnjDE with K = 0.3, |N | = 30, τ = 0.1, and
R = 2) according to the rank enters in Nemenyi post-hoc statistical test. The
corresponding results according to average differences of ranks are depicted in
Fig. 1.

Fig. 1. Different AnjDE-variants Fig. 2. State-of-the-art comparison

The second test was dedicated to show that the results of the AnjDE are
comparable to the results obtained by the DE/jDE, and nDE/njDE as well as
the winners of the CEC 2014 competition, i.e., L-Shade and MVMO. The results
of mentioned algorithms are depicted according to average differences of ranks
in Fig. 2, from which it can be seen that the AnjDE outperformed the results of
the other DE algorithms in test substantially, while the results of the L-Shade
and MVMO remains the hard problem for solving in the future.

5 Conclusion

Stochastic nature-inspired population-based algorithms have been achieved their
maturity phase recently. In the past, they were developed on disembodied com-
puter systems. With huge development of hardware, they have become a new
application domain in ER and SR, where these algorithms were ported on specific
hardware put into environment and play a role of autonomous agents. Through-
out this process, two major problems have been emerged: (1) maintaining the
population diversity as a prerequisite of open-ended evolution, and (2) evaluating
the fitness function based on the behavior of the solution in environment.

In this paper, we were focused on solving of the first problem, where the NS
was proposed as a tool for maintaining the population diversity. Actually, the
paper is continuation of already published papers of Fister et al. [7,8], wherein
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the value of NS parameters remains unchanged during the search process. Indeed,
the novelty area width, that is the crucial for the results of the optimization,
was adapted and thus the proposed AnjDE algorithm is able to adjust to the
problem during the search.

The proposed AnjDE was applied to CEC 2014 Benchmark function suite.
The results of optimization showed that this improved the results of the tradi-
tional DE/nDE, and nDE/njDE substantially, when they are comparable with
those obtained by the MVMO and L-Shade.

As the future work, finishing experiments on the higher dimensional func-
tions remains in first place. Additionally, the impact of self-adaptation of NS
parameters could become a big challenge in the future. Finally, it would also be
interesting to incorporate the NS in L-Shade or MVMO.
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