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Abstract Recently, sports training sessions have been generated automat-
ically according to the TRIMP load quantifier that can be calculated easily
using data obtained from mobile devices worn by an athlete during the session.
This paper focuses on generating a sport training session in cycling, and bases
on data obtained from power-meters that, nowadays, present unavoidable tools
for cyclists. In line with this, the TSS load quantifier, based on power-meter
data, was applied, while the training plan was constructed from a topology
of already realized training sessions represented as a topological graph, where
the edges in the graph are equipped with the real length, absolute ascent and
average power needed for overcoming the path between incident nodes. The
problem is defined as an optimization, where the optimal path between two
user selected nodes is searched for, and solved with an Evolutionary Algorithm
using variable length representation of individuals, an evaluation function in-
spired by the TSS quantifier, while the variation operators must be adjusted to
work with the representation. The results, performed on an archive of sports
training sessions by an amateur cyclist showed the suitability of the method
also in practice.
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based generation of sport training sessions. Journal of ambient intelligence
& humanized computing. 2020, DOI: 10.1007/s12652-020-02048-1

Iztok Fister Jr., Iztok Fister
Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška
cesta 34, 2000 Maribor, Slovenia, E-mail: iztok.fister1@um.si
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1 Introduction

To have an appropriate and quickly generated plan of sport training sessions
from the armchair is a desire of many amateur athletes all over the world (Fis-
ter et al. 2019). A sport training plan is an unmissable diary that guides
athletes in achieving the desired goal, either in serious competition, or just
as a joy in beating friends on the track. Usually, it is constructed by human
sport trainers who have a lot of knowledge in the Sport domain. However,
hiring a professional sport trainer results in huge costs on the one hand, while
some of them do not achieve the best harmony with the athletes (e.g., either
controversial trainers or athletes) on the other. Additionally, some athletes,
especially from rural areas, suffer from a lack of the advantages affordable in
big cities (Fister et al. 2019).

Nowadays, the scientific community is experienced with a new Artificial In-
telligence (AI) spring fostered by integration of traditional logic based AI (on-
tologies) and statistical Machine Learning (ML), which may lead to context-
adaptive systems (Holzinger et al. 2018). On the other hand, the AI spring has
fostered emerging of concept Interactive Machine Learning (iML) that looks
for algorithms interacting with agents, where the agent can be human (also
human-in-the-loop) (Holzinger 2016). In such algorithms, human intelligence
can influence on the machine intelligence (Holzinger et al. 2019). Obviously,
a part of the AI spring presents also growing a connectivity between sport
science and computer science, where among others, the new ways have been
explored that should allow athletes the generation of sport training sessions
for a particular period of time automatically (Fister et al. 2019).

In order to generate training sessions automatically, a lot of test data are
necessary (Zuo 2019). In the era of pervasive computing (Weiser 1991; Saha
and Mukherjee 2003), we have several possibilities how to collect data during
the sport training sessions. Modern sport trackers are just one of the many
options, besides numerous wearable sport watches and heart rate monitors
that are also equipped with GPS sensors. Let us mention that this technology
is, nowadays, very cheap and affordable for almost every athlete. However,
the more expensive devices offer more additional features (Žemgulys et al.
2019) that are not included in the cheaper equipment. For instance, the former
afford a better analysis of training sessions, a step counter, sleep monitoring,
etc. Sport trackers and sport watches allow us to get the whole information
of training sessions. They are able to track training load indicators as: Heart
rate, position, power, temperature, and so on.

Most of the current efforts in the domain of Automatic Generation of Train-
ing Sessions work on basis of classical training load indicators: The average
heart rate, and the training duration. These can easily be obtained from heart
rate monitors worn by athletes during the sports training session. Typically,
the TRaining IMPulse (TRIMP), proposed by Banister (Banister 1991), was
used for quantifying the training load, that is expressed as a simple product
of both the aforementioned indicators. The TRIMP is used widely in practice,
but its main drawback is that it is insensitive to different levels of training.
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This means that longer training sessions of lower intensity (low average heart
rate) have similar TRIMP values as the shorter high intensity training (high
average heart rate). This drawback might affect the quality of the generated
training sessions.

On the other hand, the heart rate monitors have some weaknesses, espe-
cially in cycling; for instance, slow response during short acceleration, depen-
dence on weather, mental stress, and diet. Therefore, power-meters have been
devised that are capable of gauging intensity during a ride (Allen and Coggan
2019). Although they have had a long history (e.g., they had already appeared
in the late 1800s), unsuitable technology and higher cost prevented their wide
usage. The price of the power-meters has been decreasing in recent years. This
means that they have also become affordable for amateur athletes.

Nowadays, the equipment is also used in sport training. The main advan-
tages of the technology can be summarized in three facts, precisely, that the
power-meter (Allen and Coggan 2019):

– allows tracking in athlete’s fitness changes,
– defines athlete’s weaknesses easily,
– refocus training to eliminate the weaknesses.

All three facts can be mastered because the power-meter gives access to a huge
amount of data. These data are captured in second-by-second intervals, and
allow users to obtain the complex information.

This study focuses on the generation of sport training sessions based on
data produced by heart rate monitors equipped with a Global Positioning Sys-
tem (GPS) and power-meters. Together, these data allow the new momentum
in the generation. In line with this, a complex method is proposed consisting
of more steps: At first, data from more sports activities are assembled into a
collection of base training maps, which serve as a source for constructing a
topological graph with nodes and edges. Each edge, representing a real path
where one of the sport activities takes place, is equipped with training load
indicators, like: The path length, absolute ascent, and average power. While
the first two indicators are calculated from GPS data, the latter originate from
the power-meter. Then, the problem is defined as constraint optimization, and
solved using an evolutionary algorithm. Because the algorithm uses a variable
length of solution, the special variation operators need to be defined for work-
ing on the representation. The evaluation function is inspired by a training
load quantifier, i.e., Training Stress Score (TSS), and needs to be minimized
by determining the boundary limits of training length and selecting a starting
to ending point. Finally, the optimal path is visualized.

A case-study was performed in order to test the proposed method. The case
study based on a collection of sport activities realized by an amateur cyclist.
This collection served as a foundation for constructing the base training map
from which the topological graph was built. Two scenarios were performed on
this topological graph, while the obtained results were visualized.

The main contributions in this study are:
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– a new approach is proposed for planning the sport training sessions, based
on topology,

– the evaluation function is developed, inspired by the training load quantifier
TSS,

– the new method is constructed and an evolutionary algorithm is defined
for optimization,

– the obtained results are analyzed in detail.

The structure is as follows: Section 2 deals with the basic information
needed for understanding the subjects that follow. In Section 3, the proposed
method is described in detail. The experiments and results are the subject of
Section 4. The paper concludes with Section 5, where the performed work is
summarized and directions outlined for the future work.

2 Basics of evolutionary algorithms

Evolutionary Algorithms (EAs) are stochastic nature-inspired population-based
algorithms mastering the Darwininan struggle of existence (Darwin 1859) in
a search process. Similar as in natural evolution, where those individuals that
are better adapted to environmental conditions have more chances to survive
and pass their genetic material to the next generation using reproduction, also
the better solutions have more chances to survive and reproduce in conditions
of simulated evolution. In this programed environment, a problem to be solved
plays the role of environment. Although there are many types of EAs, they
share the same characteristics. Actually, they are distinguished among each
other according to the representation of individuals. In general, there are four
types of EAs, as follows:

– Genetic Algorithms (GA) (Goldberg 1989),
– Genetic Programming (GP) (Koza 1994),
– Evolution Strategies (ES) (Bäck 2010),
– Evolutionary Programming (EP) (Fogel 1999).

Typically, the EA consists of the following components (Eiben and Smith
2015):

– representation of individuals,
– evaluation function,
– population,
– parent selection,
– variation operators (i.e., crossover and mutation),
– survivor selection.

Initialization and termination conditions also need to be included In order to
complete the component list. As a matter of fact, the pseudo-code of the EA
is illustrated in the Algorithm 1,

from which it can be seen that an evolutionary cycle (lines 4-10) consists of
the following steps: The parent selection (line 5) selects parents entering into
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Algorithm 1 Pseudo-code of an evolutionary algorithm

1: procedure evolutionary algorithm
2: INITIALIZE population randomly;
3: EVALUATE each candidate solution;
4: while TERMINATION CONDITION not met do
5: SELECT PARENTS;
6: RECOMBINE pairs of parents;
7: MUTATE the resulting offspring;
8: EVALUATE each candidate solution;
9: SELECT SURVIVOR solution for the next generation;

10: end while
11: return best solution
12: end procedure

a crossover operation (line 6). However, the crossover is executed with regard
to the probability of crossover pc. Then, mutation (line 7) is launched, that
modifies the corresponding individuals according to the probability of muta-
tion pm. The evaluation function (line 8) assesses the quality of the individual.
Finally, survivor selection (line 9) determines the best individual for the next
generation.

3 The proposed method for topology-based generation of sports
training sessions

The proposed method for topology-based generation of sports sessions consists
of four steps:

1. composition of base training map,
2. preprocessing,
3. optimization,
4. visualization.

The goal of the first step is to assemble a collection of sport training activities
realized by some athlete and compose them into a base training map. From the
base training map, a topological graph is built in the second step. The graph
consists of nodes representing intersections of edges, while edges are incidental
to the nodes. Interestingly, two nodes can be joined with more edges. Moreover,
some nodes can even be joined with themselves by more edges. The length,
absolute ascent, and average power are attached to each edge in the graph. The
third step is devoted to topology-based generation of sport training sessions
using an EA. Finally, the optimum path proposed by the EA is visualized.
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3.1 Composition of base training map

In the first step, the sport activities obtained from the specific athlete realized
in the same training cycle are composed into a base training map. Thus, a
wider area is obtained, depicting the geographical region in which the cyclist
mostly carries out the training sessions. Indeed, the non-existent paths in one
activity can supplement the graphical region on the one hand, while, on the
other, the paths already present in this region cause overlapping.

As a result, the sport activities in the first case widen the geographical
region in which the training sessions are usually conducted, while the second
leave the size of the region unchanged, but increase the volume of measured
track points identifying this path. Consequently, the unreliability of data is
increased, because the athlete can cover the observed path in a different di-
rection, in different weather or psycho-physical conditions.

Typically, the base training map is visualized using OpenStreetMaps in
order to verify that the selected sport activities really form a connected region
that is appropriate for representation in a topological graph.

3.2 Preprocessing

The aim of this step is to build the constructed topological training graph
from the base training map. Undoubtedly, this is the hardest step, because,
here, the GPS data are taken into consideration, and these data are typically
not consistent. Actually, this step is divided into two phases:

1. building the topological training map,
2. building the topological training graph.

The first preprocessing phase is devoted for building the topological map from
the base training map. This phase is more quantitative, because of process-
ing the large amount of track points (i.e., GPS positions) that represent the
smallest part of the path, which must be synthesized into the whole. However,
there are several track points referring to the same paths. In order to reduce
the number of track points before synthesizing the path, some track points
are either merged with the nearest ones, or even eliminated by rounding their
positions to three decimals. The result of this phase is a connected topology
map presenting an outline of the training region. This means that the map
consists only of edges, i.e., without any vital information characterizing their
nature.

On the other hand, the second phase is more qualitative, and includes
processing raw data in the term of .tcx files, from which training load indica-
tors, like latitude-longitude points, heart rate data, power-meter values, and
altitude are extracted. In this phase, the nodes for the topological graph are
determined by the intersection of two or more edges, while all the other vital
information is assigned to each edge incident by two nodes.

Let us mention that nodes give the optimization algorithm an opportunity
to find alternative paths from two nodes and, thus, the topological graph
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represents the search space of potential solutions for the optimization process.
Indeed, this graph is managed by the EA for topology-based generation of a
training plan in the optimization step.

3.3 Optimization

Topology-based generation of sport training sessions is defined as an optimiza-
tion problem, where the topology is defined as graph G = (V,E) consisting of
a set of vertices V (G) = {v1, . . . , vN} and a set of edges E(G) = {e1, . . . , eM},
together with an incidence function ψG that associates an unordered pair
ψG(ek) = {vi, vj} with each edge of G. Thus, variables N and M denote the
maximum number of vertices and the maximum number of edges, respectively.

The topology graph G has two main characteristics:

– a vertex can be joined by loop,
– vertices can be joined by multiple edges.

All the mentioned characteristics are incorporated in the adjacent matrix
AG = (ai,j) of dimension N × N , where ai,j is the number of edges join-
ing vertices vi and vj . If ai,i > 0, the vertex vi,i is connected with a loop,
while the degree of the vertex is almost two.

Additionally, three functions are assigned to each edge in the topology
graph: The first measures the absolute ascent necessary to overcome the sub-
path between both nodes joined by the k-th edge, the second determines the
average power needed by overcoming the same sub-path, while the third its
length. In other words, the absolute ascent AscG(ek) is expressed as:

AscG(ek) =

nT∑
l=1

Alt+(TP l), (1)

where nT denotes the maximum number of track points constituting the edge
ek, and the function Alt+(TP l) is a positive altitude (i.e., uphill) of the track
point TP l. The function approximates the intensity factor, with which the
stress, put on the athlete’s body during a ride, is measured in the following
sense: The higher/lower the altitude difference between vertices joined by an
edge, the bigger/smaller the intensity factor. Actually, the absolute ascent
function complies with the following relation:{

AscG(ek) > 0, climbing upwards,

AscG(ek) = 0, no climbing.
(2)

Obviously, the value of this function cannot be lower than zero due to the sum
operation used in Eq. (1).

The average power WG(ek) is expressed as:

WG(ek) =
1

nT

nT∑
l=1

W (TP l), (3)



8 Iztok Fister Jr., Dušan Fister, Iztok Fister

where the function W (TP l) is the power indicated by overcoming the track
point TP l.

The length of an edge LG(ek) is expressed as:

LG(ek) =

nT∑
l=1

L(TP l), (4)

where the function L(TP l) is the length of the track point TP l.
The proposed EA algorithm demands modification of the following com-

ponents:

– representation of solutions,
– variation operators,
– evaluation function,
– initialization.

Let us emphasize that the parent selection operator selects two parents, enter-
ing into crossover, randomly. As a survivor selection, the one-to-one selection
was implemented, borrowed from the Differential Evolution (DE) (Storn and
Price 1997). Thus, the better between the parent and offspring according to
the value of the fitness function will survive into the next generation. The
maximum number of generations is used as a termination condition. In the
remainder of the paper, the components of the modified EA are described in
detail.

3.3.1 Representation of solutions

Each solution xi in population of Np individuals is defined as variable length
vector expressed mathematically as follows:

xi = {ni, ei,1, ei,2, . . . , ei,ni}, for i = 1, . . . ,Np, (5)

where the variable ni denotes the number of edges ei,k for k = 1, . . . , ni that
connects the starting vertex of the first edge ei,1 = {vA, vi,1} with the ending
vertex of the last edge ei,n = {vi,n, vB}, and it holds that each ending vertex
of the edge ei,j = {vi,j−1, vi,j} is the starting vertex of the edge ei,j+1 =
{vi,j , vi,j+1}.

Actually, each solution describes a path from vertex vA to vertex vB that
is selected by the user. In the case vA = vB , the starting point A is equal to
ending point B, and we have to deal with a cycle.

3.3.2 Crossover

A crossover operator operates on two randomly selected individuals xi and xj .
Let us assume, the first solution describes the path as follows:

vA → vi,1 → . . .→ vi,k → vi,k+1 → . . .→ vi,ni−1 → vB ,



Topology-based generation of sport training sessions 9

while the second as follows:

vA → vj,1 → . . .→ vj,l → vj,l+1 → . . .→ vj,nj−1 → vB .

At first, the crossover point is selected randomly in the first parent xi. Let us
assume that the crossover point represents vertex vi,k. Then, the corresponding
vertex in the second parent is found such that vi,k = vj,l holds. Finally, the
remainder of the paths are exchanged in both parents, in other words:

vA → vi,1 → . . .→ vj,l → vj,l+1 → . . .→ vj,nj−1 → vB ,

and

vA → vj,1 → . . .→ vi,k→ vi,k+1 → . . .→ vi,ni−1 → vB .

Let us mention that if a matching vertex is not found in the second parent,
the closest common vertex in the adjacent matrix is selected and inserted into
the path.

3.3.3 Mutation

A mutation operator selects one individual xi in the population randomly.
Then, the vertex vi,j is chosen randomly, such that vi,j 6= vA and vi,j 6= vB ,
and the length of the mutated sub-path l. Let us assume an individual is given
that defines the following path from point A to point B:

vA → vi,1 → . . .→ vi,k → . . .→ vi,k+l︸ ︷︷ ︸
Mutated Sub-Path

→ vi,k+l+1 → . . .→ vk,ni−1 → vB ,

and the vi, k is selected as the starting vertex, while the variable l determines
the ending vertex vi, k + l of the mutated sub-path. Let us assume that the
alternative sub-path v′0 → v′1 → . . . → v′nl−1 → v′nl

is given, where v′0 = vi,k
and v′nl

= vi,k+l. Then, the alternative sub-path replaces the mutated one, as
follows:

vA → vi,1 → . . .→ v′0 → . . .→ v′nl︸ ︷︷ ︸
Alternate Sub-Path

→ vi,k+l+1 → . . .→ vk,ni−1 → vB ,

Interestingly, if the length l = 0, the loop of the vertex vi,k is added to the
path. However, if the loop is not permitted according to the adjacent matrix,
the length l is incremented, and the alternate sub-path of the new length is
searched for. The searching is repeated by incrementing the length until a
new alternative path is found, or no mutation is performed. To avoid already
visited vertices in the sub-path, Tabu search heuristics are applied (Glover and
Laguna 1997).

= 0, . . . , ni − 1 is incremented. For each l, the alternative new path from
vi,k to vi,k+l is searched for. If the path is not found, the sub-path length l is
incremented.
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3.3.4 Evaluation function

The inspiration for the evaluation function is presented by the so-called Train-
ing Stress Score (TSS ) training load quantifier defined by Coggan (Allen and
Coggan 2019), based on data obtained from power-meters. Actually, introduc-
ing the power-meters into cycling has launched a revolution in the process of
sport training.

The quantifier TSS is calculated using the following equation (Allen and
Coggan 2019):

TSS =
TD ·NP · IF

FTP · 36
, (6)

where TD means a training duration, NP is the normalized power used for
quantifying training intensity with power data, IF is an intensity factor, used
for determining the power intensity zone, and FTP is a functional threshold
power. While the FTP depends strongly on the characteristics of the athlete’s
body, IF is the ratio of the NP and the athlete’s FTP , that determines the
intensity with which the prescribed training session must be performed.

Unfortunately, the TSS cannot be used in the evaluation function in its
complete form, because data for constructing the topological graph were ob-
tained by merging data from more sport activities realized at different times.
This means that these were not conducted under the same conditions. For
instance, the part of a path represented by an edge ek can be overcome by the
rider at the beginning of the training session in the first case, and at the end
of this in the second, where he/she is already tired. On the other hand, the di-
rection of overcoming can be opposite in different sport sessions. Also, weather
conditions are not the same when comparing two different sport activities with
overlapping parts of routes.

All these issues caused that we introduced the average power WG(.) instead
of normalized power NP , while the intensity factor IF was replaced by the
training load indication 1/AscG(.). The duration of a training activity TD is
very unreliable and, therefore, we eliminated from the equation. As a result,
the evaluation function is expressed as:

f(xi) =

ni−1∑
j=1

WG(ψ−1G (vi,j , vi,j+1))

FTP ·AscG(ψ−1G (vi,j , vi,j+1 ))
, (7)

subject to

MIN LEN ≤
ni∑
j=1

LG(ψ−1G (vi,j , vi,j+1)) ≤ MAX LEN , (8)

where vi,0 = vA and vi,ni+1 = vB , respectively, the function ψ−1G is an inversion
function assigning to each ordered pair of vertices (vi,j , vi,j+1) the correspond-
ing edge ek, and MIN LEN and MAX LEN determines the minimum and
maximum length of the generated sport training, respectively.
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The goal of the optimization is to minimize the value of the evaluation
function. Actually, the proposed function prefers the solutions of the higher
average power with more climbing upwards.

3.3.5 Initialization

The topology-based generation of sports training sessions demands the pres-
ence of feasible solutions in a population. This means that each of the individu-
als must prescribe a valid path from point A to point B. Therefore, individuals
in the population of solutions need to be generated heuristically. One of the
generated solutions, however, is generated using Dijkstra Shortest Path First
(SPF) (Dijkstra 1959), while the other uses the Tabu search algorithm to avoid
selecting the already visited vertices by creation of the new individuals.

3.4 Visualization

The last step is devoted for presenting the numerical data obtained after the
topology-based generation of a training plan in a graphical presentation. The
graphical presentation enable athletes to discover insights into the relation-
ships and patterns in the numerical data, and, thus, avoid deception and con-
fusion in their interpretation. The natural way of presenting these data is a
topological outline of the path that needs to be overcome by the athlete. This
path is put onto the topological training graph that represents the context of
the drawing.

Although the more natural way could be presentation using OpenStreetMap,
the advantage of this approach is that this is embedded into the topological
graph with already marked edges and nodes, and, therefore, is closer to the
subordinate numerical data.

4 Experiments and results

The goal of the experimental work was to show that the method of topology-
based generation of training sessions is capable of building training plans and,
thus, is appropriate for application in practice. In line with this, a case-study
was prepared with which the proposed method was tested. The experiments
were applied to a collection of three sport activities realized by an amateur
cyclist during one training cycle (i.e., season). The selected sport activities
covered a geographical region of moderate size, where the corresponding topo-
logical graph was awkward enough for an evolutionary search process on the
one hand, and was not too complex for visual representation on the other.

Actually, two scenarios were tested, as follows:

– Scenario A: short-distance training,
– Scenario B: endurance training.
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The section is organized in such a way that the results of all four steps of
the proposed method can be tracked in detail. At the end of the section, the
performed work is taken into deep consideration.

4.1 Step 1: Composition of the base training map

In summary, the collection of the sport activities must be selected very care-
fully, because they must supplement each other on the map. This means that
each activity must have some mutual contact points, because, only in this way,
can the graphical region covered by the sport activities increase. In order to
ensure that the user verifies the regularity of his/her selection, this area is
visualized using OpenStreetMap.

The sample of the base topological map used in our case-study is illustrated
in Fig. 1, from which it can be seen that the collection of three sport activities

Fig. 1: Base training map: This map has been composed of three different
cycling training sessions that were realized by an amateur athlete.

really builds a grid of paths and intersections between two or more paths. Each
path represents a sequence of track points, with their GPS locations, altitudes,
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duration and intensity. In summary, the observed base topological map covers
the geographical region consisting of connected nodes and there are no islands
detected.

4.2 Step 2: Preprocessing

The result of the first preprocessing phase is a topological training map rep-
resented as an undirected graph with edges, where no nodes are outlined. The
resulting topological training map in the case-study is depicted in Fig. 2. In

Fig. 2: Topological training map: Obtained after the first preprocessing phase
without vital information, like nodes, lengths of edges, and altitudes.

order to determine the nodes, the second preprocessing phase is executed,
where a node is identified as an intersection of two or more edges. The re-
sults of this phase for our case-study is a topological training graph illustrated
in Fig. 3, from which it can be seen that the topological training graph in
question consists of 24 nodes and 40 edges. As a result, the nodes constitute
a connected graph without islands, while each edge is equipped with all the
vital information needed for the optimization step.



14 Iztok Fister Jr., Dušan Fister, Iztok Fister
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Fig. 3: Topological training graph: Obtained after the second preprocessing
phase, represented as a graph equipped with all vital information needed by
optimization.

4.3 Step 3: Optimization

The purpose of this step is to generate the sport training sessions based on
the topological training graph using the EA. The parameter setup during the
experimental work was set as presented in Table 1.

Table 1: Parameter setup of the EA for topology-based generation of sport
training sessions.

Nr. Parameter Abbreviation Value
1 Population size Np 100
2 Maximum number of generations MAX GEN 500
3 Probability of crossover pc 1.00
4 Probability of mutation pm 0.01
5 Length of individual n |ek| + 1
6 Minimum length of training plan MIN LEN {40, 90}
7 Maximum length of training plan MAX LEN {50, 110}
8 Functional threshold power FTP 220
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As can be seen from Table 1, the parameters are divided into two groups:
(1) The algorithm’s (”Nr.” 1-4 in the table), and (2) problem’s parameters
(”Nr.” 5-8 in the Table). The former controls the behavior of the EA, while
the latter determines the characteristics of the problem. For instance, the EA
works with a population of 100 individuals, each individual in the population
undergoes the operation of crossover, while the crossover operator is launched
in each generation, on average once. As a termination condition, the maximum
number of generations MAX GEN = 500 is employed.

On the other hand, the length of the individual is unknown in advance,
and depends on the potential generated solution. Constraints MIN LEN and
MAX LEN were set as depicted in the Table, where the first value for both
variables was applied in Scenario A and the second in Scenario B. The func-
tional threshold power depends on the characteristics of the athlete in question,
and was set to FTP = 220 in our case-study.

The best solution according to the fitness value obtained after 25 runs by
the EA for topology-based generation of sport training sessions in Scenario A
is presented in Table 2 that is divided into six columns representing the step

Table 2: The best training plan for Scenario A.

Step Edge Nodes WG [W] AscG [km] LG [km]
1 e9 (v7, v5) 204 4.0 6.610
2 e11 (v5, v6) 194 4.0 1.893
3 e7 (v6, v4) 177 8.0 2.142
4 e5 (v4, v3) 198 11.0 12.831
5 e6 (v3, v10) 223 6.0 9.575
6 e14 (v10, v12) 247 0.1 3.480
7 e23 (v12, v14) 212 2.0 5.391
8 e20 (v14, v9) 219 2.0 2.064
9 e16 (v9, v8) 189 0.1 0.598∑

209 4.1 44.584

number (”Step”), edges (”Edge”), incident nodes (”Nodes”), average power
(WG [W]), absolute ascent (AscG), and length of the edge (LG). In the last
row, the summary values of the corresponding columns are added. Let us
mention that the sum of average power values was expressed as a weighted
average, where the lengths of the edges were adopted as weights. That is, the
longer the path, the more effect the adopted intensity has on the weighted
average.

In summary, the best path in Scenario A consists of nine edges, describing a
path of length 44.584 km, almost without uphills (i.e., AscG = 4.1 m) that was
overcome with an intensity close to the athletes FTP (precisely 95 % of FTP).
This means that he/she rode the bike in the so-called ”Lactate threshold”
power intensity zone (Allen and Coggan 2019), where the average power is
between 91−105 % of the personal FTP. The heart rate corresponding to this
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power intensity zone is between 95 − 105 % of the personal VO2max (Allen
and Coggan 2019).

The best training plan in Scenario B presented in Table 3, shows that a
path of the optimal training session consists of 15 edges. Thus, the optimal

Table 3: The best training plan for Scenario V.

Step Edge Nodes WG [W] AscG [km] LG [km]
1 e9 (v7, v5) 204 4.0 6.610
2 e11 (v5, v6) 194 4.0 1.893
3 e10 (v6, v10) 225 2.0 3.078
4 e18 (v10, v11) 209 2.0 2.706
5 e24 (v11, v18) 178 97.0 23.641
6 e32 (v18, v21) 168 1.0 2.988
7 e33 (v21, v22) 218 6.0 1.845
8 e37 (v22, v23) 142 0.1 0.376
9 e34 (v23, v19) 168 22.0 3.184
10 e28 (v19, v16) 174 23.0 12.073
11 e29 (v16, v17) 187 8.0 2.276
12 e30 (v17, v14) 198 104.0 33.557
13 e20 (v14, v9) 219 2.0 2.064
14 e19 (v9, v13) 39 7.0 3.147
15 e15 (v13, v8) 209 0.1 2.772∑

186 18.8 102.209

path has a length of 102 km that goes uphill for almost 19 m. This course
was overcome with the average intensity of 186 W, thich is substantially lower
than the athletes FTP (precisely 84 %). Actually, this value corresponded to
the so-called ”Tempo” power intensity zone, where the intensity is between
76− 90 %, which coincides with the heart rate zone between 84− 94 % (Allen
and Coggan 2019).

Interestingly, a closer look at the column average power shows that the
worst result was achieved in step 14, where the average power WG = 39 was
held by overcoming even 7 km. As a matter of fact, this part of the course has
a great potential to be improved in the future.

4.4 Step 4: Visualization

In this subsection, the numerical data presenting the optimal paths for both
scenarios in our case-study as obtained by the EA for topology-based gener-
ation of sport training sessions are visualized using the existing topological
training graph. The results of the visualization are depicted in Fig. 4 that is
divided into two diagrams. The former illustrates the optimal path obtained
in Scenario A, while the latter in Scenario B.
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In both diagrams, the bubble A describes the starting node and the bub-
ble B the ending node. As can be seen from Fig. 4a, the course is relatively
short, and, therefore, suitable for high-intensive training sessions. This course
is also flat, as can be viewed from the last test.

Contrarily, the course displayed in Fig. 4b is much longer, and, thus, more
appropriate for endurance training sessions, where the optimal course is longer
(> 100 km) and suitable for moderately-intensive training sessions.

4.5 Discussion

The accomplished experimental work using the method for automatic genera-
tion of sport training sessions showed the advantages, as well as disadvantages,
of the proposed approach. The advantages are supported with evidence that
this kind of generation is possible, while the results are appropriate for real-
world application. On the other hand, these are represented visually, together
with all the information needed by the athlete for whom the sport training
session is planned.

However, the experiments also exposed the weaknesses of the method. The
majority of these refer to the data and data handling. Obviously, the hardest
problem was presented by the unreliability of data obtained from wearable
tracking devices equipped with GPS receivers. The data are problematic by
their nature, because their acquisition depends on several conditions, including
weather conditions, GPS accuracy, and noise.

Weather conditions affect the psycho-physical state of an athlete, which,
consequently, has an impact on his/her performance. Typically, athletes achieve
better results in sunny rather than in rainy weather. GPS accuracy is de-
pendent on satellite geometry, atmospheric conditions, signal blocking, and
receiver design. The satellite geometry refers to the arrangement of the satel-
lites in orbits which influences the quality of the GPS signal on Earth. The
atmospheric conditions can weaken the GPS signal, while some obstacles on
the Earth can also affect the GPS accuracy. Usually, the quality of a GPS re-
ceiver is proportional to its cost. That is, the more expensive the GPS receiver,
the better the GPS signal.

Noise refers to capturing some track points using wearable mobile devices of
different tracking quality, at different tracking times, and in different tracking
directions. An athlete can track the same parts of the paths in more sport
activities. Thus, different devices can be used for tracking the points onto the
same courses. As a result, the quality of these devices can incorporate the
noisy into regularly captured data. The time of capturing data refers to the
training phase in which the data are produced. Obviously, it is not equal to
ride the same part of the course at the start as to ride the same part at the
end of the training session. Normally, the athlete is more powerful at the start
than at the end of the training session. Also the tracking direction has a big
influence on the noise, because performances of the athlete riding uphill are
lesser than riding the same part of the course downhill.
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In general, information about average power acquired from wearable track-
ing devices must be taken carefully. At the moment, due to unreliability, these
data can be used as a hint in planning the sport training session, which serves
the sport trainer by planning the real training session. Amore complex pre-
processor of the sport activities must be developed if we want to build a pure
automatic solution of the noise problems.

5 Conclusions

Recently, planning the sport training sessions was based on measuring the
heart rate, that represents the training load indicator for estimating the in-
tensity load. With the advent of power-meters, the sport training theory of
cycling has achieved a new momentum. Using this new equipment mounted
on the bicycle, it is possible to monitor the intensity load during the training
session. Consequently, the new TSS qualifier was employed for calculating in-
tensity load that, nowadays, has been changing the proven practices of sport
training in cycling, based mostly on the TRIMP load quantifier.

This paper focuses on the generation of sport training sessions based on
the topology of a geographical region where training sessions normally take
place. The method consists of four steps: (1) Composition of the base training
map, (2) Preprocessing, (3) Optimization, and (4) Visualization.

In the first step, the base training map is composed from an archive of sport
activities obtained with a mobile tracking device worn by an athlete during
the realization of a training session. On basis of the GPS data found in the col-
lection, the preprocessor builds a topological training graph. The topological
graph consists of edges representing a sequence of GPS track points, and nodes
intersecting edges. Thus, each edge is equipped with vital information, such
as: Path length, absolute ascent, and average power. The topological graph is
manipulated in the optimization step by the EA for the topology-based gener-
ation of sport training sessions. This EA implements proprietary crossover and
mutation adjusted to manipulate topological graphs. The evaluation function
is inspired by the TSS quantifier. The optimal path is presented as a sequence
of edges constituting the optimal path from the starting point A to the the
finishing point B under prescribed constraints. The result is presented in nu-
merical form that is inappropriate for application in practice. Therefore, the
visual representation of the numerical data completes the proposed method.

A case-study was prepared for testing the proposed method, in which a col-
lection of three sport activities was taken into consideration. In this case-study,
two scenarios were tested: (1) Short-distance, and (2) Endurance training. The
results showed that the method found the optimal courses for both scenarios
in the sense of course length, but the proposed intensities must be observed
carefully by a real sport trainer due to noise in the input data.

There are a lot of directions in which the proposed method can be devel-
oped in the future. Mainly, the topological training graph should be changed
from an undirected to a directed graph. However, this change affects mostly
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two steps, i.e., preprocessing, and optimization. Additionally, the method could
also be applied in other sports, where power-meters are part of the sport train-
ing, i.e., triathlon. Finally, the biggest challenge presents also idea to include
the cyclist’s sport trainer in concept human-in-the-loop, where he/she could
actively contribute with his/her athlete during realization of training (i.e.,
online) in the sense of own expert knowledge.
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tion of basketball referee signals from real-time videos. Journal of Ambient
Intelligence and Humanized Computing, pages 1–13, 2019.

Y. Zuo. Research and implementation of human-autonomous devices for
sports training management decision making based on wavelet neural net-
work. Journal of Ambient Intelligence and Humanized Computing, pages
1–7, 2019.



Topology-based generation of sport training sessions 21

1

2
3

4

10

15

19
18

20

23
24

141211
13

6

1

2
3

4

5

A

B

6 7
98

1211
10

17

16

15
14 20

1918

24

25

26

22 23
21

3032
33

292831

36

27

34

37

39

36

38

40

22

21

16 17

13

7
8
9

5

a: Scenario A.
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b: Scenario B.

Fig. 4: Visualization of generated sport training sessions.


