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ABSTRACT This paper investigates how does the solution representation in nature-inspired algorithms
impact the performance of feature selection in classification problems. Four most suitable nature-inspired
algorithms for feature selection were considered in the analysis, namely the Differential Evolution, Artificial
Bee Colony, Particle Swarm Optimization, and Genetic Algorithm. The binary-coded and real-coded variants
of the mentioned algorithms were compared for filter-based and wrapper-based feature selection methodolo-
gies on datasets commonly used by the research community. Additionally, the algorithms’ performance on
reducing the feature subset size regarding different solution representations was compared. Statistical tests
were performed for discovering any significant differences in the algorithms’ performances.

INDEX TERMS Classification, evolutionary algorithms, feature selection, solution representation.

I. INTRODUCTION

The volume of data needed for classification has been increas-
ing daily. These data are said to be remarkable in both the
number of data samples and the number of attributes/features
within each sample, which represents a prominent problem
for any learning algorithm either supervised or unsuper-
vised [1]. To increase the performance of the classification
algorithm, and, on the other hand, also decrease the training
time, several methods have been proposed for dimensionality
reduction (i.e., feature selection [2]). Indeed, the goal of
feature selection is to select a subset of the most relevant
features without incurring loss of information. This algorithm
can be found in many application areas which are relevant to
intelligent and expert systems, such as data mining [3] and
machine learning [4], [5], image processing [6], bioinformat-
ics [7] etc. It is normally treated as a data preprocessing step
similar to training a model for classification previously.

Two methods for feature selection are found commonly
in literature, namely wrapper-based [6] and filter-based [8].
The main difference between the listed methods is in eval-
uating the selected feature subsets. Wrapper-based methods
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rely on a learning algorithm to determine the fitness of each
feature subset. Among the more used learning algorithms
are Support Vector Machines (SVM), Decision Trees (DT),
k-Nearest Neighbor classifier (kNN), etc. On the other hand,
filter-based methods rely on the characteristics of data for
ranking feature subsets (i.e. Joint Mutual Information [9],
where the feature selection is regarded as a preprocessing
step. The latter are computationally cheaper, and also inde-
pendent of any learning algorithm. In this method, a learning
algorithm is employed only in the validation stage, when the
optimal subset of features is already known.

For a dataset with larger number of features the exhaustive
search, enumerating all possible solutions, is not eligible to
find an optimal subset of features due to a too large search
space of 2", where m denotes the number of features. There-
fore, computationally efficient methods are needed, capa-
ble of good global search ability (exploration). This ability
is considered mostly within the nature-inspired algorithms,
to which Evolutionary Algorithms (EAs) [10], and Swarm
Intelligence (SI) based [11] algorithms belong. Many studies
of applying these algorithms for feature selection in classifi-
cation tasks have been made in the last couple of years [12],
where the Genetic Algorithm (GA) [13], Particle Swarm
Optimization (PSO) [14], Differential Evolution (DE) [15],
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and Artificial Bee Colony (ABC) [16] are distinguished as
the suitable algorithms for solving this problem according to
a recent survey [12]. As a result, these algorithms were used
in our comparative study as well.

The following review of papers referring to this domain
additionally justify the suitability of the mentioned algo-
rithms for the performed study. Indeed, Ghosh et al. [17]
applied a DE algorithm with adaptive control parameters to
feature selection. Their results showed that their proposed
algorithm outperformed the GA and regular DE algorithms in
an image classification problem. Derrac et al. [18] proposed
a coevolutionary GA algorithm for feature selection which
used three populations. Their method is focused on both fea-
ture selection and instance selection in a single process, which
reduced the computational time. Their approach is useful for
datasets with a large number of features. Zhang et al. [19]
implemented a hybrid PSO algorithm for unsupervised fea-
ture selection. They applied two filter-based strategies for
improving the convergence of the algorithm. The first strat-
egy is employed for removing the irrelevant features from
the original dataset, while the latter removes the redundant
features within the already selected feature subset. They test
their method on typical classification datasets, and justify the
superiority and effectiveness of their hybrid PSO.

Interestingly, there are also some drawbacks of these algo-
rithms. Some papers reported that scalability is one of the
key limitations of these algorithms [20], [21]. This comes
to the fore, especially when we are faced with thousands or
more features. Further, it is worth to mention that parameter
settings of these algorithms have a big influence on the results
of the optimization. To find an appropriate combination of
parameter settings for a particular optimization problem may
therefore be time consuming and may involve a lot of exper-
iments [22].

In summary, we were focused on the nature-inspired
algorithms suitable for feature selection. Although we
could also include state-of-the-art algorithms like jSO [23]
and IShade [24] into the comparative study, the No Free
Lunch (NFL) theorem [25] usually prevents to improve the
results of proven nature-inspired algorithms for solving this
problem.

In classification, the goal of feature selection is to reduce
the number of used features, and at the same time, main-
taining the same, or achieving a better classifier accuracy.
Indeed, the problem can be defined either as single or multi-
objective. Because of simplicity, the majority of authors treat
the problem as single-objective. In the single-objective fea-
ture selection, the optimization is performed with regard to
one objective only. In wrapper-based methods, this objec-
tive is usually the classifier accuracy, while in filter-based,
the information shared between the selected feature subset
and class labels are maximized. On the other hand, when fea-
ture selection is treated as a Multi-Objective (MO) problem,
then two or more objectives are taken into consideration.
Again, for wrapper-based methods, the additional objec-
tive is normally the length of the feature subset, while for
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filter-based methods, it is the redundancy of information
shared between features. Let us notice that many authors
today misidentify the concept of MO optimization with a
weighted sum of objectives, where they do not optimize
according to two or more conflicting objectives, but actually
transform the MO problem into single objective problem, and
regulate the importance of each objective in the linear sum
with size of corresponding weights.

The nature-inspired algorithms always require some
thought on defining the appropriate solution representa-
tion of the problem being solved. In the case of feature
selection in classification tasks, a solution can be repre-
sented either as binary-coded or real-coded values. Obvi-
ously, a genotype-phenotype mapping is needed for obtaining
the solution in the original problem context (i.e., pheno-
type space) from the corresponding problem-solving space
(i.e., genotype space), where it is encoded. When using the
binary representation, a feature is present/absent, when the
appropriate bit in the solution is set to 1/0. On the other
hand, when using a real-coded solution representation, usu-
ally some threshold is selected which indicates the inclusion
or absence of a feature. Although this mapping is different
for both representations, the results represents the feasible
solution in their original problem context in both cases.

According to the knowledge of the authors, no paper has
ever investigated the impact of the solution representations in
nature-inspired algorithms on the quality of results obtained
by feature selection. Key novelties of this research paper are:

o As the first, we conducted the study on the importance
of solution representations (i.e. binary and real-value)
in nature-inspired algorithms for the feature selection
problem.

o The study also investigates the impact of solution rep-
resentations on the feature subsets reduction consid-
ering different feature selection methodologies (i.e.
wrapper-based via filter-based).

The remainder of the paper is structured as follows.
In Section II, the nature-inspired algorithms are presented,
then in Section III the two most used feature selection
methodologies are described in detail. Section IV is reserved
for reporting the results of experimental work, while the paper
is concluded in Section V, with possible directions for the
future work.

Il. NATURE-INSPIRED ALGORITHMS

FOR FEATURE SELECTION

Nature-inspired algorithms maintain a population of solu-
tions x; = {x;;} fori = 1,...,Npandj = 1,...,D.
Here, Np denotes the population size (i.e., the number of
different solutions), and D is reserved for the dimensionality
of the problem to be solved (i.e., the number of elements
in the solution). According to the problem for which the
algorithm was designed, the solution representation is one
the more important factors for the success of finding an
optimal solution. For some problems, like numerical function
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optimization [23] or constrained engineering optimization
problems [26], solution coding and representation is an easy
task, while some reflection is needed for problems like asso-
ciation rule mining [27]. In the first case, the best real-coded
vector is searched for, while in the second, the solution is
encoded into representation, and some kind of mapping the
representation to a real-world solution is needed. In feature
selection, the problem of solution representation is relatively
straightforward, since the number of features in a dataset Z
corresponds directly to the dimension of a solution vector X;.
As stated in the last section, there are two possible repre-
sentations of a solution in the feature selection problem. The
former is the already mentioned binary-coded representation,
where the algorithm needs to be adapted appropriately. The
latter is the real-coded, where the presence of a feature is
calculated by mapping the element in the solutions to some
predefined interval. For example, if the search space is limited
within the interval [—1, 1], then the feature is selected if the
value of the element is within the subinterval [0, 1], while,
in contrast, the feature is not selected, if the value is within
the interval [—1, 0). Obviously, an arbitrary interval may be
defined with mapping that is appropriate to this new interval.

Since the motivation of this paper is to provide a com-
parison between several nature-inspired algorithms for fea-
ture selection according to the different representation of
individuals, the remainder of this section is devoted to
describing briefly the algorithms used in this study. At first,
the real-coded variants are described, then the differences to
their binary-coded counterparts are presented.

A. PARTICLE SWARM OPTIMIZATION

The Particle Swarm Optimization (PSO) is a computational
algorithm belonging to the SI-based family. It was devel-
oped by Kennedy and Eberhart in 1995 [14]. This is a
population-based algorithm that consists of a population
(i.e., swarm) of solutions (i.e., particles). Each particle is
associated with a velocity vit = (i1, ...,v,;,,)T, which
is responsible for moving the particles in the search space
towards the more promising regions, where a better solu-
tion of the problem can be found. During this movement,
the algorithm maintains the global best xp,,; and the local best
solutions pgt) for each particle that influence their next move.
The moving is formulated mathematically as:

1
V§t+ = VEI) + cm(pﬁ’) - th)) + C2r2(x§7te)sz - gr))’ (D

and

XEI—H) —x+ V§r+1)’ ?)
where ¢ and ¢; are acceleration constants used to scale the
contribution of the cognitive (third term in Eq. (1)) and social
components (second term in Eq. (1)), respectively, and r; and
rp are random values drawn from uniform distribution in the
interval (0, 1).

The Egs. (1) and (2), are used when dealing with real-coded
solutions (rPSO), whereas for binary-coded PSO (bPSO),
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a modification of Eq. (2) is required, as follows:

: (t+1)
LD _ L, ifrand() = S(v; /), 3)
b 0, otherwise,
where

1 “)
(t+1) °
1+e Vi
The S(-) represents a sigmoid function for transforming the
velocity of the particle to the })robability for changing the bit
value in the solution vector x!".

1
S(vff]* ) =

i

B. GENETIC ALGORITHM
The Genetic Algorithm (GA) was introduced by Hol-
land [13]. It is based on the principle of natural selection and
genetics, and belongs to population-based algorithms as well.
The original GA was proposed to work in the binary-coded
space (bGA), whereas the real-coded variants (rGA) were
introduced later. Each solution within the population under-
goes acting the several operators.

The first operator is the parent selection, that is responsible
for selecting those promising candidate solutions that can
pass their own good characteristics on to their offspring,
which constitute the so-called mating pool of newly devel-
oped individuals. There are several parent selection operators,
from which the roulette-wheel and tournament selection are
the most frequently used in the GA community [10]. The
selected parent solutions then undergo acting the crossover
operator, that mainly from two parents generates two off-
spring. There are many possible crossover operators, yet a
one-point crossover was implemented in our study. In the
one-point crossover, a crossover point is first drawn ran-
domly. The point divides selected parent solutions into heads
and tails. Then, the heads of both parents are copied into
corresponding offspring, while the tails from the opposite
parents are transferred into the same offspring. In the next
step, the offspring solutions in the mating pool undergo acting
the mutation operator (normally a bit flip by binary-coded
solutions), according to probability p,,. Next, all offspring
solutions are evaluated using a fitness function. The last
step of this evolution cycle presents survivor selection (also
replacement), where the offspring solutions compete with
their parents for a place in the new generation. When the
generational population model is selected, then the whole
population is replaced with the best individuals from both
populations (i.e., parent and mating pool). On the other hand,
only the best percent of the best offspring replace their par-
ents in the new generation, when the so-called steady-state
population model is selected.

In real-coded implementation of the GAs, the crossover
operator (e.g., one-point crossover) is replaced with a whole
arithmetic crossover that combines two parents x(1) and x®
to produce two offspring o) and 0® linearly according to
the expression, as follows:
)

051) =oax;  +( - a)xfz), and
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o = ax{" + (1 —ax?, )

where « is used to balance the amount of information which is
passed to candidate solutions from their parents. For instance,
if @ = 0.5, two same offspring are generated in the mating
pool. In this crossover, all elements of both parents are mod-
ified by transfer into their offspring, i.e., no original values
are preserved.

Additionally, the mutation operator is also replaced in
real-coded GAs, since the bit flip is no longer suitable.
Typically, the real-coded mutation replaces the value of a
randomly selected element with the value randomly drawn
from the uniform distribution in the interval, determined with
low and high boundary of the observed element.

C. DIFFERENTIAL EVOLUTION

Differential Evolution (DE) was introduced by Storn
and Price in 1995 [15]. DE is a simple, yet effective
nature-inspired algorithm for solving various complex prob-
lems. It bases on a simple mathematical model, which relies
on vector differences. A population of solutions (i.e., vectors)
are evolved through generations, where each vector under-
goes acting a set of evolutionary operators. These operators
are DE mutation, DE crossover, and DE selection. The DE
mutation can be expressed mathematically as follows:

v = x4 P —x), (6)

where rq, rp, and r3 present random and mutually different
integers within the interval [1, Np]. Factor F is used for
scaling the difference of vector and is usually within the range
[0, 1]. Then, the newly created mutant vector Vgt) enters into
the DE crossover operation with the corresponding vector x;
as:

Lo _ [ ifrand() < Cronj = . o

Yij = (t-), otherwise.

The crossover rate Cr, normally defined within the interval
[0, 1], controls the probability of modifying an element of
the trial vector u Addltlonally, the jy4nq index ensures that
at least one Value from the mutant vector v() is modified
in the new trial vector. The DE selection is the final oper-
ator, which the trial vector must under 0. Thus, each trial
vector ug) competes with its parent x for a place in the
new population-based on their fitness Value, and the fittest
between trial and parent is preserved for surviving into the
next generation. This process can be expressed mathemati-
cally as follows:

@ ) ®
f ) < )
x;""l) — {xl i) = f 0, ®)

i(t), otherwise.

However, the described process is valid for the real-coded
vector representation (rDE). To make the DE algorithm suit-
able to be able to work with binary-coded solutions (bDE),
the work of [28] was thoroughly analyzed and applied in

this study. The difference vector from Eq. 6 ((xi’; — sz))) is
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calculated as the Hamming distance between the two vectors.
Since the scaled difference must be interpreted as an integer
value, the calculated scaled difference is rounded to its nearest
integer. This mutation is denoted as the any-change mutation,
which redefines Eq. 6 as:

Dyv?. x0) = (int)d' + 1,
i (int)d',

ifrand() < d’ — (int)d’,
otherwise.

©))

In simple words, Eq. 9 selects one solution vector from among
all the vectors at a distance Dj, from the vector xg?.

D. ARTIFICIAL BEE COLONY

The Artificial Bee Colony (ABC) is a Sl-based nature-
inspired algorithm proposed by Karaboga [16] that mimics
the intelligent foraging behavior of a honey bee swarm.
In the ABC algorithm, the population (i.e., colony) consists
of three types of bees, which correspond to different search
strategies within the search space. These bees are: employed,
onlooker, and scout. Indeed, the employed and onlooker bees
are devoted primarily for exploitation, while the scout bees
primarily for exploration. In the first phase of the ABC
algorithm, the onlooker and employed bees search for food
(i.e., the solution of the problem) in the vicinity of their
current location that can be expressed mathematically as:

ng) (f) —i—a(x(t) (t)) (10)

where o is a random value drawn from uniform distribution
in the interval [—1, 1]. The onlooker bees then select food
sources with regard to the probability p; associated with the
i-th food source:

pi= S Y

o )
If the solution is not improved in a predetermined number
of iterations, it is reinitialized randomly and, thus, tries to
search for the better solutions in the new region of the search
space. This phase is the so-called scout bee phase, in which
exploration is promoted.

In order to use the ABC algorithm in the binary space
(bABC), we implemented the algorithm presented in [29],
which is based on the inverse of the Jaccard similarity coef-
ficient. The idea is to rewrite Eq. 10 as:

WD - = o (x — x), (12)
which is then formed as:
x") ~ o x Dissimilarity(x, x"), (13)
SO

Dissimilarity(vgt),

where Dissimilarity is defined as: 1 — Similarity(x;
The Similarity() function represents the Jaccard coefflclent

In the binary-coded ABC the scaling factor o is calculated
according to Eq. 14.

(O'max — Omin

ACN )iter (14)

0 = Omax
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Omax and oy, are the upper and lower bounds of o, MCN
is the maximum number of generations (or cycles), while iter
is the current generation.

Ill. NATURE-INSPIRED ALGORITHMS FOR

FEATURE SELECTION

A feature selection problem is defined as follows. Let us
assume that a large set of features Z = {z1,...,zn} is
defined. Then, the goal is to select a subset of relevant features
F = {zz,, ..., 2z} from the original set of features Z, such
that k < mand F C Z, where k is the number of elements
in the feature set and m the number of all features in Z. Thus,
it is preferable that the subset of relevant features F' should
not incur any loss of information compared to the whole set
of features Z.

Nature-inspired algorithms are a suitable tool for solving
this kind of problems. Three components of these algorithms
need to be modified before using for feature selection:

« representation of solution,

« genotype-phenotype mapping,

« evaluation function.

Nature-inspired algorithms operate on the ‘generate-and-
test’ principle, where the algorithm ensures for appropriate
modifications of current solutions during the generate phase.
In the test phase, the generated solutions undergo the evalua-
tion, where their quality is determined. The evaluation may
be performed either internally, like in the case of function
optimization, or externally, where the quality of solutions is
evaluated by an external process. In our case, the evaluation is
performed by wrapper-based and filter-based methods, where
the main difference between them is that the former applies
the real classification method for evaluation of the generated
solution, while the latter actually uses the so-called surrogate
model for determining the optimal subset of features.

In the remainder of this section, the mentioned components
of the algorithms are described in detail. Because the eval-
uation function is calculated differently for wrapper-based
methods than for filter-based, each mode of calculation is
dealt in its own subsection.

A. REPRESENTATION OF SOLUTIONS

The solutions are represented in problem-solving space the
same for both encoding (i.e., binary and real-valued), i.e., as
real-valued vectors:

() (1)

X =G, )L fori=1,... Np, (15

where D denotes a dimension of the problem, and Np is the
number of individuals in the population.

B. GENOTYPE-PHENOTYPE MAPPING
The applied genotype-phenotype mapping is illustrated
in Figure 1,

from which it can be seen that the binary vector is encoded
from the vector in problem-solving space according to rules
valid for the particular nature-inspired binary-coded algo-
rithm, while the unchanged real-valued vector is taken by
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vector x

Binary-coding Real-coding

‘ 1 ‘ 1 ‘ 0 ‘ 0 ‘ 0 ‘ 1 ‘ 0 ‘ ‘0.5‘0.7|0,4‘0,14‘0,33|0.s1‘0,04‘
Threshold=0,5

22| 2

Selected feature subset F

FIGURE 1. The genotype-phenotype mapping used for feature selection,
where the vector x in problem-solving space is of dimension D = 7.

real-coding. In the former case, the binary value directly
determines the presence of the j-th feature in subset F', when
decoded value of x;; is one. In the latter case, features for
which hold the relation x; j > Threshold, where Threshold =
0.5, are taken into subset F'.

The mapped subset of features F is then applied to classi-
fication of databases either to wrapper-based or filter-based
methods, where the quality of the selected features is eval-
uated with the corresponding evaluation function. In the
remainder of the section, both methods are presented in detail.

C. WRAPPER-BASED METHOD
Wrapper-based methods perform feature selection with the
particular machine learning algorithm. All candidate fea-
ture subsets are evaluated by applying the selected learn-
ing algorithm, where the trained model is evaluated on the
development set. The results of the classification accuracy
correspond to the fitness of the candidate solution. The most
common learning algorithm used is the kNN classifier [12].
The wrapper-based methods usually achieve good perfor-
mance at a great computational cost. However, these methods
can be prone to over-fitting, since the selected feature subsets
may become too specialized for the development set. Also,
there is usually no mechanism to investigate the redundancy
within the selected feature subset.

The fitness function for a candidate solution in a
wrapper-based method is defined as follows:

Fity = Classify(C, F), (16)

where C is the classifier, F is the selected feature subset, and
Classify stands for the applied cross-validation classification
method. The result of a classification method is a confu-
sion matrix, from which the classification accuracy statistical
measure is calculated.

The idea of wrapper-based feature selection is depicted
in Fig. 2, from which it can be seen that the best subset F*
found during the feature selection is validated on test dataset.
The classification accuracy serves as a statistical measure for
estimating the quality of the proposed method.
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FIGURE 2. Wrapper-based feature selection.
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FIGURE 3. Filter-based feature selection.

D. FILTER-BASED METHOD

Filter-based methods use statistical characteristics of the
data for determining the subset of features F. Therefore,
the feature selection search process is independent of any
classification algorithm for evaluating the selected feature
subsets. It is also worth emphasizing that filter-based methods
are computationally less expensive and more general than
wrapper-based approaches, while wrappers are better than fil-
ters in terms of the classification quality [30]. One of the most
frequently used measures for ranking the selected feature
subset is Joint Mutual Information (JMI) [31]. JMI defines the
amount of information shared between two random variables,
and lies within the range [0, 1]. If these random variables
are closely related/unrelated, then the value of JMI will be
high/low. For discrete random variables, JMI is defined as:

pla, b)
1(A;B) = — pla, b)logr————,

g beZB pla)p(b)
where p(a, b) is the joint probability distribution function
of A and B, while p(a) and p(b) are marginal probability
distribution functions of A and B, respectively.

This idea can be applied easily to the feature selection
problem, where the goal is to select those features whose
JMI in relation to the class labels is the highest. Additionally,
redundancy within the feature subset can be detected easily
by measuring the JMI among all selected features, since a
combination of k individually good features may not be the
best combination of k [8].

Considering Eq. (17), the fitness function in a filter-based
method for a candidate solution is defined as follows:

Fit) = Rel — Red,

A7)

(18)
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where Rel denotes relevance, which is expressed as:

Rel = 1@z ¢), (19)
zeF
and Red is redundancy expressed as:
Red = " Iz, 7). (20)

7,5 €F

In Egs. (19) and (20), F represents the set of selected fea-
tures, while ¢ denotes the class labels. Fit; is a maximization
function to maximize the relevance Rel and simultaneously
minimise the redundancy R/ in the selected feature subset F.
(max Eq. 18).

A diagram for filter-based feature selection is presented
in Fig. 3, from which it can be seen that a machine learning
algorithm is employed to test the performance of the best
selected feature subset in the last stage of filter-based feature
selection. Also in this case, the result of the algorithm is the
classification Accuracy statistical measure calculated from
the corresponding confusion matrix.

IV. RESULTS

The purpose of our experimental work was three-fold:
(1) To find out how the representation of solutions influ-
ences the wrapper-based as well as filter-based feature selec-
tion methods, (2) to establish, which of the used repre-
sentations of solutions reduce the feature set the best, and
(3) finally, an analysis of convergence rates of algorithms
for wrapper-based and filter-based methods for both solution
representations. In line with this, four experiments were
conducted, in which the influence of solution representation
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within various nature-inspired algorithms is analyzed
according to:

« Wrapper-based selection,

« Filter-based feature selection,

o The number of selected features, and
o Algorithms’ convergence rates.

During the experimental work, the binary-coded and
real-coded algorithm variants described in Section II were
applied for solving the feature selection problem. The param-
eters of the algorithms used in the experiments were set as
reported in their respective papers (or experimentally in case
of rGA). Indeed, these values are also depicted in Table 1.
To provide the comparison as fairly as possible, the termi-
nation condition for all algorithms was set to 100 gener-
ations, with a total of 30 independent runs per algorithm.
The population size Np = 30 was kept the same for all
algorithms. It is important to emphasize that all algorithm
variants used/implemented in this study, have been used in
a feature selection problem.

TABLE 1. Parameters of compared algorithms.

Algorithm Parameter Value
bDE [28] Crossover probability  0.08
bABC [29],rABC [16] Max trial 50
bPSO [32], rPSO [14]  Cognitive and )
social acceleration
bGA [13] Tournament size 4
Mutation probability 0.1
rDE [15] Scaling Factor 0.5
Crossover probability 0.9
rGA Tournament size 4

Mutation probability 0.05

Friedman tests [33] were conducted in order to estimate the
results statistically. The Friedman test is a two-way analysis
of variances by ranks, where the test statistic is calculated
and converted to ranks in the first step. If no significant
differences are found according to variances, the post-hoc
tests are conducted using the calculated ranks in the second
step. The lower the rank, the better the algorithm [34].

The Friedman statistical tests captured the results of clas-
sification accuracy according to the selected features on
all evaluation datasets in validation phase. Eight classi-
fiers, obtained for all four binary-coded and four real-coded
nature-inspired algorithms, consisting of 15 x 5 = 75 statis-
tical measures, where the first number in the term denotes
the number of observed datasets and the second the five
statistical measures, denoting: the best, the worst, the mean,
the standard deviation, and median value of classification
accuracy obtained over 30 independent runs.

The Friedman test is a safe and robust non-parametric
test for comparing more algorithms over multiple classi-
fiers, and, together with the corresponding Nemenyi post-hoc
test, enables a good presentation of statistical results [35].
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A drawback of the Friedman test is that it makes the whole
multiple comparisons over data sets and is, consequently,
unable to establish a proper comparison between the con-
sidered algorithms [36]. Therefore, a Wilcoxon two paired
non-parametric test is applied as a post-hoc test after the
control method (i.e., the algorithm with the lowest rank)
is determined using the Friedman test. On the other hand,
the Nemenyi test is applied as a second post-hoc test in
our study. Although this test is very conservative, and may
not find any difference in most experiments [37], it was
used due to graphical presentation of the results. In contrast,
the Wilcoxon test is more powerful [34]. Both tests were
conducted using a significance level of 0.05 in this study.

In the remainder of the paper, evaluation databases are
described in detail. The section is concluded with a presenta-
tion of results obtained in the mentioned experiments.

TABLE 2. Datasets used in the experimental work.

Dataset #of Qbser— # of # of classes
vations features

Adult 48842 14 2
Gas 13910 128 6
Lymphography 148 18 4
Mushroom 8124 22 2
Optic 5620 64 10
Spect 267 22 2
Splice 3190 60 3
Vehicle 946 18 4
Credit-approval 653 15 2
Libra movement 480 90 15
Breast 699 9 2
Sonar 208 60 2
Tosnosphere 351 34 2
Semeion 4456 256 10
German 1996 20 2

A. EVALUATION DATASETS

The performance of all algorithm variants for solving the
feature selection was carried out on 15 commonly used clas-
sification datasets, acquired from the UCI machine learning
repository [38]. The used datasets are collated in Table 2. The
features within the mentioned datasets have different charac-
teristics, where they can be either binary, discrete and contin-
uous. Continuous features present the biggest challenge for
the algorithms, because JMI can be quite hard to calculate
in this case. To simplify this problem, all features were dis-
cretized using the Weka software and the MDL method [39].
Each dataset was then split randomly into training and testing
sets, with 70% of samples going to the training and 30% to
the testing set. We payed closed attention that the classes were
evenly distributed among the two sets.

Let us notice that the results are tracked according to test
instances. A test instance is considered an average classifi-
cation accuracy comparison of a binary- and a real-coded
algorithm using the selected feature subset of a particu-
lar evaluation dataset for a distinct classifier. The classifi-
cation accuracy is obtained by using the trained classifier
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TABLE 3. Classification results for binary and real-value coded algorithms after applying filter-based feature selection, using the kNN classifier.

ABC DE GA PSO

Binary Real Binary Real Binary Real Binary Real
Adult 59.36+£0.0000 < 61.031+0.0511{64.95+0.0745 > 59.9240.0306|59.82+0.0175 < 60.154£0.0327|59.36+0.0000 < 67.10+0.0853
Breast 92.23+0.0000 = 92.2340.0000 | 92.23+0.0000 > 92.18+0.0027|92.23+0.0000 > 92.1440.0037|92.23+0.0000 > 91.80+0.0068
Credit 84.26+0.0000 > 84.1640.0039|83.941+0.0057 < 84.2540.0009 | 84.26+0.0000 > 84.23+0.0013 | 84.26+0.0000 > 81.40+0.0918
Gas 59.7240.0216 < 80.39+0.0496 | 76.78+0.0492 > 57.58+0.0614 | 56.70+0.0493 < 58.9540.0244 | 65.57+0.0680 < 69.12£0.0563
German |70.074+0.0018 > 68.99+£0.0209 | 68.8040.0242 < 70.10£0.0000 | 69.8040.0046 > 69.73:£0.0049 | 69.53+0.0141 > 69.41+£0.0225
Tonosphere |90.6040.0017 > 87.83+0.0324 | 86.0740.0327 < 90.72+£0.0036 | 90.5740.0000 < 90.69+0.0069 | 90.664+0.0176 > 87.74+0.0308
Libras 65.724+0.0466 < 71.5840.0385(73.33+0.0305 > 65.3940.0613|63.00+0.0435 < 66.4440.0342|71.25+0.0408 > 70.44+0.0386
Sonar 81.30+0.0390 > 72.4540.0775|74.58+0.0555 < 74.74£0.0468|79.11+£0.0361 < 79.2240.0488|76.15+0.0428 > 73.28+0.0779
Lymph 65.96+£0.0000 < 68.3040.0332|68.65+0.0349 > 65.9640.0000 | 66.241+0.0155 < 67.09£0.0294 | 66.241+0.0155 < 67.87£0.0423
Mushroom |98.69£0.0002 < 98.7740.0016 | 98.85+£0.0017 > 98.6940.0002 | 98.69+£0.0000 < 98.7040.0003 |98.70+£0.0004 > 97.4240.0464
Optic 67.01+£0.0307 > 58.014+0.0462|61.81+0.0388 > 57.3440.0406 | 64.47+0.0355 < 65.4740.0388|58.07+0.0492 > 56.28+0.0603
Semeion | 76.6440.0214 < 87.65+0.0126 | 86.874+0.0147 > 84.23+0.0195|82.4940.0163 > 78.10+0.0244 | 85.704+0.0143 > 84.95+0.0162
Spect 80.08+0.0043 > 79.0540.0323|78.31+£0.0379 < 79.79£0.0061 | 79.59+0.0063 < 79.67£0.0063 |79.79+0.0061 > 77.45+0.0430
Splice 75.2240.0413 > 66.8540.0428 | 66.38+0.0484 < 73.2340.0389|73.71+£0.0479 < 76.26+0.0415|72.57+0.0494 > 66.61£0.0592
Vehicle |56.6440.0000 > 55.12+0.0220 |55.4940.0282 < 56.41+0.0089 | 56.6440.0000 > 56.17+0.0122|56.524+0.0064 > 54.28+0.0348

Best 8 6 8 7 5 10 12 3

(which is trained using the best selected features F from the
training set) on the test set of each experimental dataset. Actu-
ally, there is a total of 15 test instances for each algorithm,
since 15 datasets were used.

B. INFLUENCE OF SOLUTION REPRESENTATION ON
FILTER-BASED FEATURE SELECTION

The first experiment was intended to show how a particular
solution representation impacts the filter-based feature selec-
tion in a classification problem. Thus, the most commonly
used kNN classifier was utilized, while the k was set to 10.
The results of filter-based feature selection for binary and
real-coded algorithms are gathered in Table 3. The results in
the mentioned Tables are averaged after 30 independent runs
of each algorithm in the test.

To study the importance of solution representation, both
variants of each algorithm are compared, based on the average
classification accuracy of the trained models according to the
selected feature subsets. To distinguish the performances of
binary- and real-coded algorithm variants, appropriate rela-
tion operator signs are used to indicate which of the two
algorithm variants is ‘better than’ (sign ‘>’), ‘worse than’
(sign ‘<’, or ‘are equal’ (sign ‘=’). These observations are
summarized in Tables for each pair of (algorithm’s variant,
dataset). Additionally, the corresponding sums are presented
in the last column of the table. Also the best average obtained
classification accuracy is reported for each dataset, which is
marked in bold font.

As can be seen from Table 3, the binary representation was
best suited for the PSO, ABC, and DE algorithms, since better
results were obtained in 33 test instances, while the real-value
variants obtained the better results in just 26 test instances
by considering the distinct sum of best rows for all datasets.
Interestingly, only the real-coded GA outperformed its binary
version, while obtaining better results in 10 test instances.
Considering the best overall classification on each distinct
dataset (marked in bold face, and not counting ties) the binary
ABC and DE are clear winners, since both obtained the
overall best results on 3 datasets. Results in Table 3 indicate
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that binary-coded algorithms perform best when used for
filter-based feature selection.

The results of the Friedman non-parametric test is pre-
sented in Figure 4, which is divided into a Table (tagged
with (a)) presenting the results of the Wilxocon post-hoc
test numerically, and a diagram (tagged with (b)) illustrat-
ing the results of the Nemenyi post-hoc test graphically.
The best algorithm found by the Friedman test is used as
a control method with which all the other algorithms are
compared using the Wilcoxon two paired non-parametric test.
The results of the Wilcoxon test are illustrated by corre-
sponding p-values, where a significant difference between
two algorithms appears if p < 0.05. The best algorithm in
the Nemenyi post-hoc test, as well as the control method
in Wilcoxon test, is denoted with the I symbol in the
Table, while the significant difference between the con-
trol method and corresponding algorithm is depicted by the
T symbol.

The results of the Nemenyi post-hoc test are presented
as intervals of critical differences. Additionally, these results
of the Nemenyi post-hoc tests are presented in diagrams as
squares representing average ranks, while the lines are used
for delimiting the confidence intervals. The lower the rank
value, the better the algorithm. On the other hand, two algo-
rithms are significantly different, if their confidence intervals
do not overlap.

The Friedman statistical test confirmed that the binary-
coded ABC is the best suited algorithm for filter-based feature
selection, since it obtained the lowest rank. It performed
significantly better than then real-coded PSO, whereas no
statistical differences were found when compared to all
others variants. Considering just the real-coded algorithms,
the GA obtained the lowest rank by the Friedman sta-
tistical test. For a more detailed analysis, the Wilcoxon
post-hoc test revealed (see Table 4(a)), that the binary PSO
is also significantly better than its real-coded variant when
using any classifier. Indeed, confirmed by using the Fried-
man statistical test and the Wilcoxon test, it seems that
filter-based feature selection favors binary-coded algorithms,
since, according to obtained results, better feature subsets
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. Nemenyi Wilcoxon

Alg | Fri CD [S. | pvalue | S.
bDE | 4.06 | [3.45,4.66] 0.64

bABC | 3.38 | [2.77,3981] | 1 00 I
bPSO | 3.66 | [3.06,4.27 ] 0.74
bGA | 3.70 | [3.10,4.31] 0.17

tDE | 4.19 | [3.58,4.79 ] < 0.05 | f
rABC | 3.94 | [3.33,4.54] 0.56
rPSO | 5.10 | [4.49,5.70] | ¥ 0.12
rGA | 3.79 | [3.18,4.39] 0.21

(a) Numerical results obtained by kNN.

Average Rank differences

AARRREEE

bGA DE rABC  rPSO IGA

Algorithms

(b) Graphical results obtained by kNN.

bDE DbABC DbPSO

FIGURE 4. Nemenyi and Wilcoxon post-hoc test results for filter-based feature selection with the kNN classifier.

TABLE 4. Results of Wilcox test for all algorithms in filter-based feature selection.

bDE | bABC | bPSO | bGA | DE | rABC | tPSO | rGA
bDE | oo | 0.64 | 092 | 0.66 | 049 | 047 | f | 041
bABC | 064 | oo | 074 | 017 | f | 056 | 0.12 | 0.21
bPSO | 092 | 074 | oo | 099 | t+ | 055 | + |o091
bGA | 066 | 0.17 | 099 | oo | 0.8 | 055 | 0.11 | 0.60
DE | 049 | { t 1018 | 0o | 076 | 023 | 0.17
rABC | 047 | 056 | 055 | 055 | 0.76 | oo + ] 029
PSO | | 0.12 t o1 023 ¢t 0o | 0.07
rGA | 041 | 021 | 091 | 060 | 0.17 | 029 | 0.07 | oo

selection was achieved. The mentioned findings are also jus-
tified by the results of the Nemenyi post-hoc test.

Table 4 provides a thorough Wilcox test, where each of
the comparing algorithms (binary-coded and real-coded) was
used as the control method. The analysis of results in Table 4
indicates, that both variants of the PSO algorithm and the
real-coded DE show the most significant differences, when
compared to other methods.

C. INFLUENCE OF SOLUTION REPRESENTATION ON
WRAPPER-BASED FEATURE SELECTION

This experiment was designed to show how a particular
solution representation impacts the wrapper-based feature
selection in classification. Again, the same classifier as in the
last experiment was used to train a model according to the
selected features.

The results of the wrapper-based feature selection for
binary and real-valued algorithms are gathered in Table 5.
Considering the average classification accuracy, the binary-
coded ABC and PSO algorithms outperformed the results
of their real-coded variants. On the other hand, the opposite
effect is visible with the DE and GA algorithms. Consider-
ing the best overall classification on each distinct dataset,
the binary variants, with the exception of the DE, were able
to find the best results on 7 datasets.
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The Friedman statistical tests were applied again to find,
if there are any significant differences among the algorithms
and the used solution representations. The results of these
tests are collated in Figure 5.

According to the Friedman statistical test, the best rank was
obtained by the real-coded DE algorithm. The binary-coded
DE and real-coded ABC were found to be significantly worse
than the best algorithm according to the Friedman test.

The Wilcoxon test was considered for the more powerful
and accurate analysis of the results in Table 5(a). Indeed,
it confirmed the results of the Friedman test and additionally
recognized both variants of PSO significantly worse than the
best performing algorithm according to Friedman.

A thorough Wilcoxon test was also performed for
wrapper-based feature selection. The results are depicted
in Table 6.

It seems that wrapper-based feature selection is better
suited for binary-coded algorithms, since, according to the
results, lower ranks were obtained.

D. INFLUENCE OF SOLUTION REPRESENTATION ON
REDUCING THE NUMBER OF FEATURES

The goal of this experiment was to discover if the solution
representation within comparing algorithms has any impact
on the size of the selected feature subset. Since the selected
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TABLE 5. Classification results for binary and real-value coded algorithms after applying wrapper-based feature selection, using the kNN classifier.

ABC DE GA PSO
Binary Real Binary Real Binary Real Binary Real
Adult 81.274£0.0000 > 81.04£0.0036 | 81.00£0.0056 < 81.24F0.0012 | 81.06£0.0042 > 81.03%0.0046 | 81.10£0.0042 > 81.01£0.0063
Breast | 95.3640.0044 < 95.40+0.0055 | 95.2340.0054 < 95.4740.0047 | 95.4940.0044 > 954240.0044 | 953940.0049 < 95.4740.0045
Credit 82.2240.0009 < 82.35+0.0037 | 82.3440.0034 > 82.2240.0025 | 80.74+0.0501 < 80.7840.0503 | 82.1740.0029 > 79.53+0.0617
Gas 95.094£0.0015 > 93.3240.0074 | 94.2340.0042 < 95.1240.0021 | 95.144:0.0021 > 95.0340.0017 | 94.8740.0031 > 94.4140.0056
German | 73.2240.0124 > 72.5940.0132 | 72.834£0.0100 > 72.7740.0006 | 72.9740.0106 < 73.05+0.0161 | 72.8240.0116 < 73.2740.0150
Tonosphere | 86.8240.0252 < 87.1740.0231 | 87.674£0.0170 > 87.3940.0160 | 87.2640.0247 < 87.9240.0212 | 87.92+0.0217 > 87.3640.0205
Libras | 70.8140.0296 < 71.7240.0336 | 72.1740.0271 > 71.3620.0251 | 70.3940.0232 < 71.6740.0239 | 72.4740.0301 > 71.72+0.0248
Sonar 80.8940.0456 > 80.1640.0367 | 79.954+0.0367 < 81.5640.0363 | 80.21£0.0381 < 81.0440.0359 | 81.0440.0430 > 80.57+0.0375
Lymph | 79.01£0.0675 > 78.5140.0563 | 79.6540.0480 < 80.71£0.0321 | 77.4540.0611 < 77.5940.0641 | 78.5840.0570 < 78.7940.0466
Mushroom |100.00£0.0000 = 100.00-£0.0000 | 100.004-0.0000 = 100.00-0.0000 | 100.00£0.0000 = 100.004-0.0000 [ 100.00-£0.0000 = 100.00+0.0000
Optic 84.7540.0038 > 81.8310.0096 | 82.8240.0090 < 84.8140.0046 | 84.454+0.0056 < 84.5540.0063 | 84.1240.0070 > 83.4140.0080
Semeion | 91.64£0.0066 > 89.7840.0076 | 90.55+0.0075 < 90.6240.0098 | 90.9740.0086 > 90.9040.0098 | 90.2040.0087 < 90.6840.0066
Spect 82.9640.0187 > 80.9140.0376 | 81.1140.0336 < 82.26+0.0157 | 83.424£0.0202 > 82.5140.0268 | 83.46+0.0257 > 81.11£0.0430
Splice 81.53+0.0129 > 78.1140.0132 | 78.854+0.0120 < 81.7040.0124 | 82.07£0.0155 < 82.09+0.0119 | 80.16+0.0111 > 79.6740.0101
Vehicle | 68.0940.0205 > 67.7240.0175 | 67.074£0.0199 > 66.1640.0206 | 67.3040.0191 < 67.7540.0221 | 66.9140.0207 < 67.3740.0176
Best 10 4 5 9 5 9 9 5
8
Nemenyi Wil "
. emenyi 1lcoxon
Alg | Fri. J
CD | S. | p-value | S. | § .|
bDE | 4.80 | [4.19,540] | 1 | < 0.05 | 7 o
@
bABC | 3.59 | [2.98,4.19] 0.35 5 51
bPSO | 4.26 | [3.65,4.86 ] <0.05| 1 | %
24
bGA | 3.84 | [3.23,4.44] 0.06 v o4
DE | 3.33 | [2.72,3.93] | i 00 i =
=3
rABC | 531 | [470,591] | T | <0.05 | t | < 31
rPSO | 4.36 | [3.75,4.96 ] <005 | 7
rGA | 3.67 | [3.06,4.27 ] 0.47 2 L
(a) Numerical results obtined by kNN. UDE DABC bPSO bGA  DE  ABC  PSO  1GA
Algorithms

(b) Graphical results obtained by kNN.

FIGURE 5. Nemenyi and Wilcoxon post-hoc test results for wrapper-based feature selection with the kNN classifier.

TABLE 6. Results of Wilcox test for all algorithms in wrapper-based feature selection.

bDE | bABC | bPSO | bGA | DE | rABC | tPSO | rGA
bDE | oo ¥ 1006 | 1 1017 | ¢
bABC | 1 oo | 0.14 | 028 | 035 ¢ + 1079
BPSO | + | 014 | oo | 032 ¢ t | 007 | 056
bGA | 006 | 028 | 032 | oo [006| + | 008 | 033
DE | f | 035 t ] 006 | t t | 047
rABC | 1 T T T T 00 T T
PSO | 0.17 | 1 0.07 | 008 | t 00 +
tGA | t | 079 | 056 | 033|047 | t t 00

feature subsets influence the classification results directly,
both the feature subset size and the classification accuracy
were considered in this experiment. In line with this, both
encoding variants of each nature-inspired algorithm were
considered for all evaluation datasets. The algorithm variant
was promoted as better when the obtained feature size was
smaller, while the classification result was the same or better.
If the feature subset size was equal, and, at the same time,
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equal classification accuracy was achieved, the algorithm
variants were denoted as equal.

The results of the conducted experiments are depicted
in Tables 7 to 8, where the relations between binary- and
real-coded nature-inspired algorithms are marked with signs
‘<’, ‘>’, and ‘=’ using the same meaning as in previous sub-
sections. The comparison of algorithm variants being unfit for
comparison was marked with sign ‘!’. The algorithm variant
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TABLE 7. Comparison of feature subset reduction for binary and real-coded algorithms for filter-based feature selection.

ABC DE GA PSO
Binary Real Binary Real Binary Real Binary Real
Adult 5.00£0.00 < 5.00£0.00 | 5.1740.38 ! 5.00£0.00 | 5.00£0.00 < 5.00£0.00 | 5.00+0.00 ! 5.1040.40
Breast 1.00£0.00 = 1.00£0.00 | 1.004+0.00 > 1.00£0.00 | 1.00£0.00 > 1.00£0.00 | 1.00+0.00 > 1.0040.00
Credit 3.33+048 > 3.57+£0.57 | 3.70£0.70 < 3.50£0.57 | 3.50+£0.51 > 3.60+0.50 | 3.37£0.49 > 3.97£0.72
Gas 24.20+2.89 ! 44.10£6.05 |44.63£3.23 | 32.33+£3.58(29.27+3.00 < 26.13+3.07|35.504£2.70 ! 37.30+4.48
German 497+0.18 ! 4574057 | 433+080 ! 5.00£0.00 | 4.70+£047 ! 4.63+0.49 | 470+£047 ! 4.4340.77
Ionosphere | 5.30+£047 > 5734098 | 6.33+1.09 < 55740.57 | 5.50£0.51 ! 5.774£043 | 6.03+0.67 ! 5.5341.01
Libras 6.83+£0.38 ! 21.10+5.61 |23.60£1.94 | 9.07£1.68 | 6.90+£0.84 < 6.77+£0.43 [15.07£1.51 > 15.80+2.98
Sonar 7.10+£0.31 > 10.134+1.57 [13.70£220 < 7.10+1.16 | 7.27+£0.58 < 7.20+0.41 | 8.83+£1.64 > 9.40+1.69
Lymph 4.00£0.00 < 3.37£0.72 | 3.274£0.87 > 4.00£0.00 | 3.97£0.18 < 3.87+£0.35 | 3.97+0.18 < 3.174£0.59
Mushroom | 2.27+0.45 !  2.90+£0.71 | 3.20£1.00 ! 2.67+£0.48 | 2.43+0.50 ! 2.504+0.57 | 2.60+0.67 > 3.17£1.02
Optic 6.67£0.92 > 11574228 |1540+£2.33 ! 9.13£1.87 | 6.73£1.28 < 6.23+£0.90 [10.27£2.21 > 11.47+£2.32
Semeion [26.804+1.19 ! 103.10£3.19(93.13+£3.54 | 65.90+3.67|51.104+3.19 | 37.2743.60|76.67+£3.58 ! 75.30+4.28
Spect 7.004£0.00 !  6.374+0.56 | 6.204+0.55 ! 7.00£0.00 | 6.57+£0.50 ! 6.874+0.35 | 6.77+£0.43 ! 6.274+0.52
Splice 3374049 > 9.63£2.20 [13.00+£191 < 4.13+£1.01 | 3.23+0.50 ! 3.474051 | 7.30£1.21 > 7.90£1.77
Vehicle 5.00£0.00 ! 4.734£0.52 | 4.174£0.70 ! 5.0040.00 | 5.00£0.00 > 5.00£0.00 | 5.00+0.00 ! 4.6040.50
TABLE 8. Comparison of feature subset reduction for binary and real-coded algorithms for wrapper-based feature selection.
ABC DE GA PSO
Binary Real Binary Real Binary Real Binary Real
Adult 8.00+0.00 ! 7.80%£1.06 | 7.67+£147 ! 7.8740.51 7.70+1.44 > 8734253 | 7.67£1.18 > 8.07%+1.87
Breast 6.37£1.00 ! 6.37£1.03 | 6.00£098 ! 6.50+0.97 | 6.53+090 > 6.77£1.01 6.60+1.04 < 6.53+0.82
Credit 723£0.73 < 633+1.32 | 6274£139 > 6.70£147 | 640+£140 ! 6.574+1.30 | 6.50+£1.81 ! 5.9041.60
Gas 100.50+5.10 ! 71.67+4.51 | 72.53+£5.72 | 73.63£5.23 | 73.03+£5.65 > 74.10+4.51 | 76.93£4.74 | 74.60+3.92
German 12434179 ! 11.2341.65 | 11.87+£1.98 ! 11.03+1.07 | 11.70£2.07 < 11474221 | 11.2042.06 ! 12.17£1.86
Tonosphere | 11.33+2.87 ! 12.67+2.26 | 11.93£2.32 ! 11.10£2.54 | 10.80£2.71 ! 11.30£2.44 | 10.804+2.55 > 13.60£3.09
Libras 42.80+£4.76 < 42731420 | 41.43£4.58 ! 40.93+5.20 | 40.174+3.82 ! 40.50£5.30 | 40.40+5.51 > 43.4344.37
Sonar 28.37+£4.01 > 29.601+3.67 | 27.67£3.56 < 26.43+3.22 | 26.204+3.99 | 26.77£2.90 | 26.97+3.74 > 29.1743.82
Lymph 5874141 > 6.07+1.17 | 747£131 < 6.00+£0.74 | 6.57+1.81 !  697£1.99 | 6.73+2.00 ! 7.67+2.11
Mushroom | 7.904+1.75 > 11.97£2.01 | 11.53£2.05 < 11.23£2.08 | 11.53£2.16 > 12.43+£2.62 | 11.60£240 < 11.17£1.84
Optic 55.874+2.06 ! 43.074£2.96 | 43.434+3.39 ! 48.7042.79 | 48.23+3.06 ! 48.634+3.00 | 46.60+2.34 | 45434323
Semeion |200.80+7.82 ! 132.0048.49|137.10+7.84 ! 140.204+7.40|138.70+£8.33 > 140.10+6.18 |136.10£7.47 ! 138.40+8.56
Spect 11.30£1.62 ! 11.074+223 | 11.80£1.85 < 11.27+1.31 | 11.20+£1.90 > 11.57£1.43 | 11.00+1.88 ! 10.904+2.31
Splice 21.83+3.51 > 30.07+3.67 | 29.174£3.87 < 20.60+2.28 | 20.07+4.26 < 18.77£3.20 | 23.80+3.10 > 27.1743.83
Vehicle 10.83+1.29 ! 10.774£1.07 | 10.37+£140 ! 9.60£0.89 | 10.40+£1.54 ! 1047+1.28 | 9974143 | 10.93+£1.51

is unfit for comparison if the better feature subset size reduc-
tion and best average classification accuracy is not achieved
with the same algorithm variant. Thus, the obtained average
feature subset length is reported for binary- and real-coded
algorithms by feature selection on each observed dataset.

The results in Table 7 show that binary-coded algorithms
perform better in filter-based feature selection. In several
instances, they achieved the better results compared with
real-coded algorithms in reducing the number of features,
while maintaining the same or better classification accuracy.
The same is true for the wrapper-based methods presented
in Table 8, where the binary-coded algorithms achieved a
similar performance. The only difference is in the higher aver-
age number of selected features in the case of wrapper-based
methods. The reason for that lies in the calculation of redun-
dancy among the selected features in filter-based feature
selection methodologies that is not present in wrapper-based
methods.

E. INFLUENCE OF FEATURE SELECTION METHODOLOGY
ON BINARY- AND REAL-CODED ALGORITHMS

The goal of this experiment was to check how do both
the feature selection methodologies influence the results of
binary- and real-coded algorithms. The comparison is pro-
vided in Figure 6 in terms of Friedman ranks and critical
differences. The left four methods in each graph belong
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to filter feature selection methodology, while the right are
wrapper-based. The results show that wrapper-based feature
selection provides better classification accuracy in real- and
binary-coded algorithms by significant margins.

F. ANALYSIS OF CONVERGENCES RATES

OF COMPARING ALGORITHMS

The last test is reserved for comparing the convergence
rates of binary- and real-coded algorithms for filter- and
wrapper-based feature selection. The convergence is analyzed
in terms of objective function and also the number of features.
The reported results are averages of all runs, and for all
datasets for each algorithm. The results of this test is depicted
in Figures 7 and 8.

Considering the filter-based feature selection, almost all
algorithms, with the exception of binary-coded DE and
real-coded ABC converge similarly in terms of the objec-
tive function. In terms of lowering the number of features,
the binary-coded ABC algorithm is the most successful,
where the difference with second best algorithm (real-coded
GA) is enormous. We find the reason in good exploratory
capabilities of the binary-coded ABC.

The analysis of convergence graphs for wrapper-based fea-
ture selection shows similar performances as in filter-based
methodology for the objective function. Considering the
number of features, the number of features grows through the
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FIGURE 7. Converge rates for filter-based feature selection. Subfigure (a) reports the objective function convergence rates, while
subfigure (b) is reserved for reducing the number of features through generations of the evolutionary process.

evolutionary process. This is normal, since the objective func-
tion in wrapper-based feature selection methodology only
takes into account the classification accuracy of the current
subset.

Results of this experiment show that filter-based feature
selection methodology is more successful in reducing the
feature subset size, although achieving a worse classification
result. (see Tables 7 and 8).

G. DISCUSSION

After a careful analysis of results in Tables 3 and 5, we can
conclude that the bABC outperformed the results of the
rABC using both classification methods, since better classifi-
cation results were achieved in more test instances. Specif-
ically, the filter-based bABC obtained the best result in 8
test instances, while the wrapper-based bABC in 10. This
can be contributed to the neighborhood search mechanism,
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which greatly improves the global search ability in the feature
selection problem space. On the other hand, the rABC most
likely use more function evaluations to find the optimal sub-
set of features. Considering the DE algorithm, both variants
achieved similar results. Since the ‘DE/rand/1/bin’ muta-
tion strategy was utilized for the rDE variant, good explo-
ration was achieved, which can compete with the advanced
any-change mutation used in the bDE. The filter-based rGA
outperformed the results of the filter-based bGA, since it
achieved best results in 10 test instances (i.e., 5 more than
the bGA). For the wrapper-based variant, it achieved the
best results in 9 test instances, compared to just 5 for the
wrapper-based bGA. We speculate that this fact can be mainly
ascribed to a better crossover mechanism incorporated within
this variant of the rGA. Consequently, the better and faster
the exploration, the better the feature subsets. A similar
phenomenon can be observed, when the PSO algorithm
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FIGURE 8. Converge rates for wrapper-based feature selection. Subfigure (a) reports the objective function convergence rates, while
subfigure (b) is reserved for reducing the number of features through generations of the evolutionary process.

results were taken into consideration, but in the favor of
the binary-coded variant. According to the results, the bPSO
was able to find better feature subsets in filter-based and
wrapper-based methods. In general, this complies with the
well known fact that the binary-coded PSO variants achieve
good results in solving discrete problems [2].

Considering the reduction of the number of features
reported in Tables 7 and 8, the bABC outperformed the
results of the rABC regardless of which feature selection
method was used. Again, this can be ascribed to the supe-
rior neighborhood search when creating the mutant vector.
Interestingly, the filter-based approach produced less incom-
parable test instances (marked with ‘!’ in the corresponding
tables), meaning that better feature subsets are obtained, since
feature relations are included in the fitness function. The DE
algorithm was able to produce smaller feature subsets when
using the real-coded solution representation by using both
classification methods. This is due to the rDE being more
focused on the smooth and slow refinement of the feature sub-
sets, whereas the bDE variant is focused more on exploration
in all stages of the evolutionary process. The rGA algorithm
showed better results in reducing the number of features with
the filter-based method. On the other hand, the bGA found
smaller feature subset using the wrapper-based approach.

The binary-coded PSO achieved the best results by using
both feature selection methods. It seems that the sigmoid
function, which is used for mapping the particle velocity to a
solution, has the strong impact on the creation of mutant par-
ticles during the evolutionary process. This mapping offers
better and faster exploration of the search space (i.e. all
possible feature subsets).

Regarding the convergence rates in filter-based feature
selection, all algorithms show similar performance, except
the rABC and bDE algorithms. The most probable cause for
this seems to be a fast convergence towards a local optimum
on some of the datasets. The convergence rates of algorithms
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using the wrapper-based method is very similar to those using
the filter-based, except the wrapper-based rABC, bDE, rGA,
and bGA that converge much slower than all other algorithms
in tests.

V. CONCLUSION

This paper investigates the importance of solution representa-
tions in nature-inspired algorithms when applied for feature
selection in classification problems. Today, these problems
have emerged in many application domains, referring espe-
cially to expert and intelligent systems. Simultaneously, more
and more developers have begun to solve the problems using
various methods. Therefore, the purpose of the paper is to
help these upcoming developers with the findings of the
study, i.e., primarily, how to select the appropriate solution
representation, which algorithm to select, and which classifi-
cation method is the more suitable for their needs.

According to a recent survey [12], the four most often
used nature-inspired algorithms for feature selection have
been exposed, like DE, ABC, PSO, and GA, which are
also considered in our study. Binary-coded and real-coded
algorithm variants were compared using the filter-based and
wrapper-based feature selection methods on nine regularly
used datasets from the UCI machine learning repository.
An additional experiment was performed, where selected
feature subset sizes were analyzed according to different
solution representations. Statistical tests were performed to
check for any significant differences between the results of
various nature-inspired algorithms using binary-coded and
real-coded representation.

The results showed that binary-coded solution representa-
tion is preferred to filter-based and wrapper-based methods.
Interestingly, the binary-coded ABC achieved the best results
in filter-based feature selection based on the classification
accuracy. On the other hand, the binary variants of ABC and
PSO provided the best results overall for the wrapper-based
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feature selection. Regarding the feature subset reduction,
the binary-coded variants of the observed nature-inspired
algorithms lowered the number of selected features on aver-
age in both feature selection approaches. Filter-based meth-
ods had even lower average sizes of the selected feature
subsets compared to those obtained with the wrapper-based
method.

For the future work we would like to investigate the impact
of solution representations in different applications areas
of feature selection, while also extending the study to a
multi-objective feature selection problem formulation.
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