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A B S T R A C T

Association rule mining is intended for searching for the relationships between attributes in transaction
databases. The whole process of rule discovery is very complex, and involves pre-processing techniques, a rule
mining step, and post-processing, in which visualization is carried out. Visualization of discovered association
rules is an essential step within the whole association rule mining pipeline, to enhance the understanding
of users on the results of rule mining. Several association rule mining and visualization methods have been
developed during the past decades. This review paper aims to create a literature review, identify the main
techniques published in peer-reviewed literature, examine each method’s main features, and present the main
applications in the field. Defining the future steps of this research area is another goal of this review paper.
1. Introduction

Association Rule Mining (ARM) is definitely one of the most im-
portant and popular data mining techniques for discovering unknown
knowledge from transaction databases. The ARM is also a part of Ma-
chine Learning (ML) with the task to discover interesting relationships
between items in large transaction datasets. The relationships are ex-
pressed by association rules determining how and why certain items are
connected. The story of ARM started with a seminal paper of Agrawal,
Srikant, et al. (1994). Agrawal set the theoretical foundations for the
process of ARM, and proposed the first algorithm, called Apriori. Apriori
is a deterministic algorithm for mining association rules, and is still
today featured as one of the top algorithms in the Data Mining (DM)
domain (Wu et al., 2008), as well as a member of an unprecedented
scale in student textbooks.

Many of the first ARM algorithms were based on deterministic
methods like Eclat (Zaki, 2000) and FP-growth (Borgelt, 2005; Han,
Pei, & Yin, 2000). However, contemporary ARM algorithms are based
on stochastic population-based methods (Telikani, Gandomi, & Shah-
bahrami, 2020). A substantial effect on this domain was contributed
by Altay and Alatas (2019), who utilized these methods for dealing
with both categorical and numerical attributes. On the other hand, the
ARM algorithms have started to apply for mining sequential patterns.
For instance, Soysal (2015) replaced the traditional find-all-then-prune
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approach with the heuristic method to extract primarily associated
patterns without pruning.

In the following years, the ARM gained huge interest in the ML
community. Its popularity was proven with many practical applica-
tions, especially, in the domains such as market-based analysis (Nisbet,
Miner, & Yale, 2018), medical diagnosis (Xu, Zhao, Zhan, Wang, &
Hu, 2022), census data (Malerba, Lisi, Appice, & Sblendorio, 2002)
or protein sequences (Gupta, Mangal, Tiwari, & Mitra, 2006), among
others.

Data analysis pipelines typically consist of data cleanup and min-
imizing data imputations (also data pre-processing), data collection
and exploration design, and comprehending the mined knowledge.
Thus, the whole ARM pipeline is complex (see Fig. 1), because it
consists of three steps, as follows: the pre-processing, the ARM, and
the post-processing. The input to the pipeline presents the transaction
database, which consists of rows and columns, where each row presents
a transaction, and columns the attributes. In the pre-processing step,
some optional substeps can be applied to make the data more robust,
i.e., data cleaning and missing data imputation, where some outliers,
or rows with a lot of missing data can even be removed. On the
other hand, some other operations, for example, data squashing (Fister,
Fister, Novak, & Verber, 2022), can help reduce the transaction dataset.
Then, the ARM process itself is performed. In line with this, several
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Fig. 1. The basic ARM pipeline.

lgorithms exist, as mentioned, and are some of the most used. The out-
ut of this step is usually a huge collection of mined/identified/found
ssociation rules. Usually, researchers present these rules as a table,
r summarize them using some metrics. However, visualization of the
ssociation rules needs to be conducted for the best insights.

Nowadays in ML, there is a trend to go for easier representation
f the results obtained by ML/AutoML (automated ML) pipelines. This
ntention also coincides with the emerging research area of eXplainable
rtificial Intelligence (XAI) (Arrieta et al., 2020; Barredo Arrieta et al.,
019). XAI has become an important part of the future of AI, because
AI models explain the reasoning behind their decisions. This provides
n increased level of understanding between humans and machines,
hich can help build trust in AI systems (Kumar, 2022). In summary,
AI is a set of processes and methods to comprehend and trust the
esults created by the ML algorithms. In line with this, it tries to
escribe an AI model’s impact on the one hand, and exposes its po-
ential biases on the other. Thus, the ML model is estimated according
o its accuracy, fairness, transparency, and outcomes of AI-powered
ecision-making (Borrego-Díaz & Galán-Páez, 2022).

XAI can be manifested in several forms: text explanation, visu-
lization, local explanation, explanation by example, explanation by
implification, and feature relevance (Barredo Arrieta et al., 2019;
ennetot et al., 0000). Thus, there is an increased interest of researchers

n developing new methods for easier representation of the results. Def-
nitely, one of the most important parts of these efforts is visualization
ethods (Arrieta et al., 2020).

Typically, ARM algorithms generate a huge number of association
ules. Frequently, the results are opaque for ordinary users, and need
ome explanations to understand their meaning. On the other hand,
isualization of the results has a huge explanation power. Although a
ot of visual methods have been proposed for ARM, to the best of our
nowledge, no review for dealing with this problem from the XAI point
f view exists nowadays.

Therefore, the aim of this paper is to collect and discuss visualiza-
ion techniques for ARM that have appeared from its advent to the
resent day. Each method is studied in detail and features are compared
ith each other in the sense of XAI. The contributions of this review
aper are summarized as follows:

• The evolution of ARM visualization methods is presented.
• The features of each of the methods are defined.
• The advantages/disadvantages of each method are outlined.
• An example is presented for each of the surveyed methods.
• Explaining models using the ARM visualization are summarized.

The review of the ARM visualization methods is based on pa-
ers published from three different main sources: the ACM Digital
ibrary, IEEEXplore, and Google Scholar. The analyze of the methods
re highlighted from the following points of view: (1) characteristics,
2) visualization focus, and (3) attribute type. The taxonomies of the
RM visualization methods are introduced based on the highlights.

The structure of the paper is organized as follows: Section 2 deals
ith the ARM problem in a nutshell. The mathematical definition of

he ARM visualization is the subject of Section 3. A detailed overview
2

m

of traditional ARM visualization methods is reviewed in Section 4. New
ideas in the ARM visualization are the subject of Section 5. Taxonomies
of the ARM visualization are illustrated in Section 8. In Section 9,
review of the remainder of the analyzed ARM visualization paper
follows. The review concludes with Section 10 that summarizes the
performed work and outlines potential ideas for the future work.

2. Association rule mining in a nutshell

The ARM problem is defined formally as follows: Let us sup-
pose a set of items 𝐼 = {𝑖1,… , 𝑖𝑀} and transaction database 𝐷 =
{𝑇 𝑟1,… , 𝑇 𝑟𝑁} are given, where each transaction 𝑇 𝑟𝑖 is a subset of
objects 𝑇 𝑟𝑖 ⊆ 𝐼 . Thus, the variable 𝑀 designates the number of items,
and 𝑁 the number of transactions in the database. Then, an association
rule can be defined as an implication:

𝑋 ⇒ 𝑌 , (1)

where 𝑋 ⊂ 𝐼 (left-hand-side or LHS), 𝑌 ⊂ 𝐼 (right-hand-side or RHS),
and 𝑋 ∩ 𝑌 = ∅. The following four measures are defined for evaluating
the quality of the association rule (Agrawal et al., 1994):

𝑠𝑢𝑝𝑝(𝑋 ⇒ 𝑌 ) =
𝑛(𝑋 ∩ 𝑌 )

𝑁
, (2)

𝑐𝑜𝑛𝑓 (𝑋 ⇒ 𝑌 ) =
𝑛(𝑋 ∩ 𝑌 )
𝑛(𝑋)

, (3)

𝑖𝑓 𝑡(𝑋 ⇒ 𝑌 ) =
𝑠𝑢𝑝𝑝(𝑋 ∩ 𝑌 )

𝑠𝑢𝑝𝑝(𝑋) × 𝑠𝑢𝑝𝑝(𝑌 )
, (4)

𝑜𝑛𝑣(𝑋 ⇒ 𝑌 ) =
1 − 𝑠𝑢𝑝𝑝(𝑌 )

1 − 𝑐𝑜𝑛𝑓 (𝑋 ⇒ 𝑌 )
, (5)

where 𝑠𝑢𝑝𝑝(𝑋 ⇒ 𝑌 ) ≥ 𝑆𝑚𝑖𝑛 denotes the support, 𝑐𝑜𝑛𝑓 (𝑋 ⇒ 𝑌 ) ≥ 𝐶𝑚𝑖𝑛
the confidence, 𝑙𝑖𝑓 𝑡(𝑋 ⇒ 𝑌 ) the lift, and 𝑐𝑜𝑛𝑣(𝑋 ⇒ 𝑌 ) the conviction of
the association rule 𝑋 ⇒ 𝑌 . There, 𝑁 in Eq. (2) represents the number
of transactions in the transaction database 𝐷, and 𝑛(.) is the number of
repetitions of the particular rule 𝑋 ⇒ 𝑌 within 𝐷. Additionally, 𝑆𝑚𝑖𝑛
denotes minimum support and 𝐶𝑚𝑖𝑛 minimum confidence, determining
that only those association rules with confidence and support higher
than 𝐶𝑚𝑖𝑛 and 𝑆𝑚𝑖𝑛 are taken into consideration, respectively.

The interpretations of the measures are as follows: The support
measures the proportion of transactions in the database which contain
the items𝑋 and 𝑌 . The confidence estimates the conditional probability
𝑃 (𝑌 |𝑋), denoting the probability to find the 𝑌 of the rule in transaction
under the condition that this transaction also contains the 𝑋. The
lift is the ratio of the observed support that 𝑋 and 𝑌 arose together
in the transaction if both set of items are independent. The convic-
tion evaluates the frequency with which the rule makes an incorrect
prediction.

3. Visualization of association rule mining

Visualization of ARM can be described mathematically as a set of
triplets:

 = {⟨𝑋1, 𝑌1, 𝑍1⟩,… , ⟨𝑋𝑖, 𝑌𝑖, 𝑍𝑖⟩,… , ⟨𝑋𝑛, 𝑌𝑛, 𝑍𝑛⟩}, (6)

here 𝑋𝑖 denotes an antecedent, 𝑌𝑖 a consequent, and 𝑍𝑖 a vector of
vailable interestingness measures (e.g., support, confidence, etc.) for
= 1,… , 𝑁 . In a nutshell, different visualization methods depend on:

• the number of interestingness measures to display,
• the visualization focus,
• the rule set size.

he number of interestingness measures to display is limited by the
umber of dimensions that can be visualized (i.e., 2D or 3D). The
isualization focus determines how the association rule defines the
eighborhood of rules to be visualized. In line with this, the neighbor-
ood is defined by: interestingness measure, items, similarity of RHS
nd LHS, or time series’ visualization. The rule set size limits the num-
er of association rules that are included into a specific visualization

ethod.
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Table 1
Search results of papers regarding the keywords in various databases.

Database name URL Total Included

ACM Digital Library dl.acm.org 6 4
IEEEXplore ieeexplore.ieee.org 214 21
Google Scholar scholar.google.com 16,100 25+

Total 16,320 25+

3.1. Study design

For conducting the systematic literature review, we followed the
guidelines presented in the Systematic Literature Review Guidelines in
Software Engineering (Kitchenham, Charters, et al., 2007). Our primary
goal was to identify the frequency of the ARM visualization methods,
the main features of these methods, and the applications in which
these methods were applied. According to our goals, we developed the
following Research Questions (RQ)s:

• RQ1: Which methods are developed for the ARM visualization?
• RQ2: Which challenges and open problems are placed behind the

ARM visualization?
• RQ3: Which software packages are available to users tackling

these problems?
• RQ4: What awaits the methods for visualization of association

rules in the future?

We conducted a literature search using major databases from 18 to 22
November, 2022. The main search strings that were used for searching
the databases were as follows: ‘‘association rule mining’’ AND ‘‘vi-
sualization’’ OR ‘‘visualisation’’. The search string was also modified
according to the search formats of different databases. The study fo-
cused on three databases: Google Scholar, ACM Digital Library, and
IEEE Xplore. Google Scholar is the broadest database that includes most
of the other database’s papers as well. Indeed, this fact was justified
when we include the other databases, like ScienceDirect, Scopus, and
WOS, for the test. Unfortunately, this inclusion did not improve the
search capability by using the same search keywords in the sense of the
increased number of papers. On the other hand, the other databases,
i.e., ACM and IEEE, were included because these consist of the more
prominent papers from the Computer Science domain, where usually
all doubts related to the proper title and authors’ names of the papers
are excluded.

Table 1 presents the results of our search.1 Each of the papers was
prescreened according to its abstract and keywords.

When the results were collected, we also filtered out the duplicates.
Additionally, when searching through the Google scholar we checked
for citing articles of each paper, so that additional results were then
identified and included in this review paper. We also specified the
selection and exclusion criteria as well as limitations. The selection
criteria were the follows: (1) research paper addresses any kind of
ARM and its connection with visualization, and the research must be
peer reviewed, i.e., published in a referred conference, journal paper,
book chapter or monograph. The search was conducted with exclusion
criteria as follows: ‘‘The research paper is not written in the English
language’’, and limitations such as: ‘‘The literature review search was
limited to only three databases’’.

The summary of abstracts from IEEEXplore and ACM Digital Library
publications is shown in the wordcloud Fig. 2, from which it can be
seen which keywords mainly highlight the research area studied in this
review paper.

The frequency of papers is presented in Fig. 3. Let us mention
that only articles that fully utilize/present/propose/use visualization

1 Note that we also checked the citing articles of results from Google
Scholar manually.
3

Fig. 2. Wordcloud of the extracted abstracts.

methods are included in a bar chart. According to the figure, we can
see that there are no notable deviations during the years, while there
are some islands in the specific years when no papers were published
in this research area.

4. A detailed overview of traditional ARM visualization methods

In the following subsections, each of the methods is outlined, fol-
lowed by a summary of related work, while several methods are also
illustrated by an example. The examples of the particular visualization
are implemented in arulesViz (Hahsler, Chelluboina, Hornik, & Buchta,
2011) on a set of 11,267 association rules produced by the Apriori algo-
rithm (Agrawal et al., 1994) mining the Mushroom UCI ML dataset (UC
Irvine ML Repository, 1987) using the following limitations: 𝑆𝑚𝑖𝑛 = 0.3
and 𝐶𝑚𝑖𝑛 = 0.5.

Table 2 presents a summary of the traditional ARM visualization
methods that were found in our systematic literature review. It is
divided into four columns that present: a sequence number (column
‘Nr.’), a class (column ‘Class’), a variant (column ‘Variant’), and the
method’s developer (column ‘Reference’). As can be seen from the table,
we are focused on eight classes of visualization methods and their
variants (together seven visualization methods). In the remainder of
the paper, the aforementioned visualization methods are illustrated in
a nutshell.

4.1. Scatter plot

A Scatter plot (Fig. 4(a)) was firstly used for visualizing mined
association rules by Bayardo and Agrawal (1999). In general, this plot
is used to display an association or relationship between interestingness
measures 𝑍𝑖 (usual support and confidence) that are presented as dots
in the Scatter plot. Additionally, the third measure (usual lift) is in-
cluded as a color key. Thus, rules with similar values of interestingness
measures are placed closer to each other, while the correlation can be
established between dependent and independent variables. Typically,
the so-called regression line is drawn in the Scatter plot, representing
the trend of the relationship between two observed variables. This line
can also be used as a predictive tool in some circumstances.

4.1.1. Twokey plot
A two-key plot (Fig. 4(b)) is a special kind of Scatter plot that was

developed by Unwin et al. (2001), especially, for analyzing associa-
tion rules. It consists of a two dimensional Scatter plot displaying an
association between two measures of interestingness (usually support
and confidence), while the third measure is represented by the color of
the points (i.e., support/confidence pairs), where the color corresponds

https://dl.acm.org
https://ieeexplore.ieee.org
https://scholar.google.com
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Table 2
Summary of ARM visualization methods.

Nr. Class Variant Reference

1 Scatter Scatter plot Bayardo and Agrawal (1999)
Two key plot Unwin, Hofmann, and Bernt (2001)

2 Graph Graph-based Klemettinen, Mannila, Ronkainen, Toivonen, and Verkamo (1994)

3 Matrix Matrix-based Hian-Huat Ong, leong Ong, keong Ng, and peng Lim (2002)
Grouped matrix-based Hahsler and Karpienko (2017)

4 Mosaic Mosaic plot Hofmann (2008)
Double decker plot Hofmann and Wilhelm (2001)
Fig. 3. The frequency of papers per year.
Fig. 4. Scatter and Two-key plots powered by arulesViz.
to the length of the rule (also order). Interestingly, 2-order association
rules describe trails moving from the upper right side (perfect result)
to the left lower side of the same plot (lesser support and lesser
confidence).

4.2. Graph-based

Graph-based techniques (Fig. 5) identify how rules share individual
item (Buono & Costabile, 2005; Ertek & Demiriz, 2006; Klemettinen
et al., 1994; Rainsford & Roddick, 2000). They visualize association
rules using vertices and edges, where vertices annotated with item
labels represent items, and itemsets or rules are represented as a second
set of vertices. The items are connected with itemsets/rules using
arrows. For rules, arrows pointing from items to rule vertices indicate
LHS items, and an arrow from a rule to an item indicates the RHS.
Interestingness measures are typically added to the plot by using the
color or the size of the vertices representing the itemsets/rules. Graph-
based visualization offers a very clear representation of rules but they
4

tend to become cluttered easily, and, thus, are only viable for very small
sets of rules.

4.3. Matrix-based

Matrix-based visualization (Hian-Huat Ong et al., 2002) (Fig. 6(a))
identifies associations between antecedent (LHS) and consequent (RHS)
items. Thus, association rules are organized as a square matrix 𝑀 =
{𝑚𝑗,𝑘} of dimension 𝑀 ×𝑀 , in which distinct antecedent items 𝑋𝑖 ∈
{𝑥𝑖,𝑗} for 𝑗 = 1,… , |𝑋𝑖| and distinct consequent items 𝑌𝑖 ∈ {𝑦𝑖,𝑘} for
𝑘 = 1,… , |𝑌𝑖| are included. The values of some interestingness measure
(e.g., lift) are then assigned to the corresponding position 𝑚𝑗,𝑘 = 𝑍𝑖 of
the matrix. Typically, the antecedent itemset of the rules is ordered
by increasing support, while the consequent itemset by increasing
confidence before visualization.

However, the matrix visualization is limited by the rule set size
(i.e., <1000), especially in the case of a huge matrix, which makes the
exploration of the matrix much harder.
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Fig. 5. Graph plot powered by arulesViz.

4.3.1. Grouped matrix-based visualization
The grouped matrix-based visualization (Hahsler & Karpienko, 2017)

(Fig. 6(b)) is a variant of the original matrix-based visualization, where
the large set of different antecedents (the columns in matrix 𝑀) are
grouped into the smaller set of groups using clustering. Mathematically,
the set of antecedents is grouped into a set of 𝑘 groups 𝑆 = {𝑆1,… , 𝑆𝑘}
according to minimizing the sum of squares within the particular
cluster, in other words:

argmin
𝑆

𝑘
∑

𝑖=1

∑

𝑚𝑖,𝑗∈𝑆𝑖

‖𝑚𝑖,𝑗 − 𝑚𝑖‖2, (7)

where 𝐦𝑖 = {𝑚𝑖,𝑗} for 𝑗 = 1,… , |𝐴𝑖| is a column 𝑖 of matrix 𝐌 which
represents all values with the same antecedent, and 𝑚𝑖 is the center of
the cluster 𝑆𝑖. Thus, the 𝑘-means algorithm (Hartigan & Wong, 1979) is
applied 10-times with random initialization of the centroids. The best
solution is then used for an ARM visualization. The motivation behind
the ARM visualization method is to reduce the antecedent’s dimension
that enables more informative visualization of the association rules.

4.4. Mosaic plot

A mosaic plot (Hartigan & Kleiner, 1984) is applied for visualiz-
ing the interesting rule, consisting primarily of categorical attributes
(Fig. 7(a)). It is based on the so-called contingency table, in which the
frequencies of the attribute appearances in the interesting rule 𝑟∗ are
assigned to each position 𝑚𝑗,𝑘, where 𝑗 denotes the corresponding the
antecedent attribute 𝐴𝑗 and 𝑘 the consequent attribute 𝐴𝑘.

The interesting rule is determined as follows: Let us assume that
each rule 𝑟𝑖 ∈ R is a tuple 𝑟𝑖 = ⟨𝑋𝑖, 𝑌𝑖, 𝑍𝑖⟩, where 𝑋 denotes the
attributes 𝐴 = {𝐴 ,… , 𝐴 } belonging to the antecedent, 𝑌 to the
5

𝑖 𝑝
consequent, 𝑍 is a set of interestingness measures, and 𝑋 ∩ 𝑌 = ∅.
Then, the interesting rule 𝑟∗ for visualizing with mosaic plot is defined
as

𝑟∗ ⇒ 𝑌 |𝑍, (8)

where 𝑋 = {𝐴𝑥1 = 𝑎𝑥1 ∧ 𝐴𝑥𝑘 = 𝑎𝑥𝑘}, 𝑌 = {𝐴𝑦 = 𝑎𝑦}, and 𝑍 =
{𝑠𝑢𝑝𝑝, 𝑐𝑜𝑛𝑓}, for which the difference of confidence (doc) for rule 𝑋 ⇒

𝑌 and ¬𝑋 ⇒ 𝑌 is the maximum, in other words:

max
𝑟∈R

𝑐𝑜𝑛𝑓 (𝑋 ⇒ 𝑌 ) − 𝑐𝑜𝑛𝑓 (¬𝑋 ⇒ 𝑌 ). (9)

Mosaic plots were introduced as a graphical analogy of multivariate
contingency tables (Hofmann, Siebes, & Wilhelm, 2000). This means
that the position 𝑚𝑖,𝑗 (also a cell in a contingency table) is presented in
a mosaic plot as an area divided into the highlighted part (colored) that
is proportional to the support of the rule 𝑋 ⇒ 𝑌 and the unhighlighted
part of the rule ¬𝑋 ⇒ 𝑌 . Thus, the confidence is proportional to the
height of the highlighted part of the area.

4.4.1. Double Decker plot
Double Decker plot (Hofmann, 2000) allows comparing the pro-

portions of the highlighted heights referring to confidence measure
more easily (Fig. 7(b)). While the original mosaic plot splits tiles in
vertical and horizontal directions, the Double Decker splits these only
horizontally. As a result, the antecedent of the interesting rule is now
expressed mathematically as:

𝑋 = {𝐴𝑥1 = ⋅ ∧ 𝐴𝑥𝑝 = ⋅},

i.e., the proportions of the highlighted heights are presented in each
tile of the mosaic plot, while the widths of the tiles are represented
as labels denoting the antecedent’s attributes. Thus, the highlighted
shades illustrate relations with an outcome set to ‘True’, while the white
shades refer to relations, whose outcome leads to ‘False’.

5. New ideas in the visualization of association rules

This section reviews papers dealing with ARM visualization methods
that accumulate new ideas in this domain. The ideas are collected in
Table 3, where the papers are classified according to different visual
features. As can be seen from the table, here, we were focused on
the seven ARM visualization methods, which, in our opinion, best
reflect the development in this domain. In the remainder of the section,
the selected ARM visualization methods are illustrated in detail. Let
us emphasize that we provide visualization graphics only for those
methods which are either publicly available or the permissions to
publish were obtained by the corresponding authors.
Fig. 6. Matrix and Grouped matrix-based plots powered by arulesViz.
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Fig. 7. Mosaic and Double Decker plots powered by arulesViz.
Table 3
Summary of the new ARM visualization methods.

Nr. Class Variant Reference

1 Fishbone Ishikawa diagram Tsurinov, Shpynov, Lukashina, Likholetova, and Artyomov (2021)
2 Molecular Molecular representation Said, Guillet, Richard, Picarougne, and Blanchard (2013)
3 Lattice Concept lattice Shen, Bao, and Zhang (2020)
4 Metro Metro map Fister and Fister (2022b)
5 Sankey Sankey diagram Fister and Fister (2022a)
6 Ribbon Ribbon plot Fister et al. (2020)
7 Glyph Glyph-based Hrovat, Fister, Yermak, Stiglic, and Fister (2015)
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5.1. Ishikawa diagram

Typically, the Ishikawa diagram (Tague, 2005) is applied as a cause
analysis tool appropriate for describing the structure of a brainstorming
session, in which a development team tries to identify possible reason
causing a specific effect. Consequently, the Ishikawa chart is also called
a cause/effect diagram. As a result of the brainstorming process, a
fishbone diagram is constructed as an arrow with an arc directing to
the effect (i.e., a problem statement). Then, the possible causes of the
problem need to be identified that are presented as branches originating
from the main arrow.

The diagram has also been applied in ARM visualization. For in-
stance, the authors (Tsurinov et al., 2021) have established that ARM
algorithms produce a large number of mined association rules in un-
structured form. This means that there is no information about which
features are more relevant for a user. In this sense, they proposed the
Fishbone ARM (FARM) that is able to introduce a hierarchical structure
for rules. The structure enables that the priority of features becomes
clearly visible.

The fishbone structure presents a basis for visualization with FARM.
In this structure, features, inserted as ribs in a symbolic fishbone, are
ordered such that the conviction metric values grow from the rear
toward the head. Thus, the complexity of the structure increases by
adding additional attributes. On the other hand, the statistical sig-
nificance of the results also needs to be increased. In line with this,
cross-validation is employed for evaluating the significance that splits
the result dataset into two different portions (i.e., test and validation),
and then re-sampled during more iterations.

5.2. Molecular representation

A molecule is a group of two or more atoms connected together
with chemical bounds (e.g., covalent, ionic) (Ebbing & Gammon, 2016).
Therefore, a molecule representation refers to a connected graph with
nodes denoting atoms and edges denoting the chemical bounds between
6

them. The representation inspired (Said et al., 2013) into developing a
new ARM visualization method that is devoted for visualizing items
arising in the antecedent and consequent of the selected association
rule. Thus, two characteristics need to be determined: (1) the contri-
bution of each item to the rule, and (2) the correlation between each
pair of antecedents and each pair of consequents from an archive of as-
sociation rules. The association rules are explored before visualization
according to one of the interestingness measures selected by the user,
e.g., support, confidence, and lift.

The contribution of an item in the selected association rule 𝑅 =
𝑋 ⇒ 𝑌 is calculated with measuring the Information Gain (IG) defined
by (Freitas, 1998):

𝐼𝐺(𝐴𝑖) = 𝐼𝑛𝑓𝑜(𝑅) − 𝐼𝑛𝑓𝑜(𝑅|𝐴𝑖), (10)

here

𝐼𝑛𝑓𝑜(𝑅) = −
𝑛
∑

𝑗=1
𝑃 (𝑅𝑗 ) log𝑃 (𝑅𝑗 ), and

𝑛𝑓𝑜(𝑅|𝐴𝑖) =
𝑚
∑

𝑘=1
𝑃 (𝐴𝑖, 𝑘)

(

−
𝑛
∑

𝑗=1
𝑃 (𝑅𝑗 |𝐴𝑖,𝑘) log𝑃 (𝑅𝑗 |𝐴𝑖,𝑘)

)

.

(11)

hus, it holds that attributes with higher values of 𝐼𝐺 are good pre-
ictors of the selected rule. In contrast, if items with low or negative
𝐺 values are encountered, the selected rules are estimated as irrele-
ant. On the other hand, the lift interestingness measure (Eq. (4)) is
pplied for determining the correlations between pairs of items in the
ntecedent and consequent, respectively.

The visualization of molecular representation is typically realized
sing sphere 3D graphs (also powered by R), where spheres present
tems and edges of the different distances’ connection between them.
he calculated characteristics of items into the selected rule are cap-
ured in a sphere graph as follows:

• the size of the sphere is proportional to the value of 𝐼𝐺,
• the positive value of 𝐼𝐺 is a plot in a sphere of one color

(e.g., blue), while the negative one in a sphere of another color
(e.g., white),
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• the distance between two spheres is proportional to the measure
lift.

owever, authors (Said et al., 2013) simplified the visualization of
ssociation rules based on a molecular representation by developing
tool for VISual mining and Interactive User-Centered Exploration of
ssociation Rules (IUCEARVis).

In summary, the main weakness of the molecular structure is that
t shows the importance of items to rules, and cannot show the distri-
ution of association rules.

.3. Concept lattice

A concept lattice is a tool for extracting specific information from
assive data. It is obtained after a concept analysis that belongs to the
omain of applied mathematics (Truong & Tran, 2010). The results
f the concept analysis are aggregated in a data structure that is,
ypically, presented in a Hasse graph. The Hasse graph consists of
oncepts representing as nodes in a 2-dimensional lattice, and edges
xpressing the generalization and instantiation of relationships between
he concepts (Shen et al., 2020).

Formally, the concept lattice is defined as a triple 𝐿 = ⟨𝑂,𝐴,𝐵⟩,
here 𝑂 denotes a set of objects, 𝐴 a set of attributes, and 𝐵 is a
inary relationship matrix 𝐵 ⊆ 𝑂 × 𝐴 denoting that an object 𝑜 ∈

and attribute 𝑎 ∈ 𝐴 are in a relationship, if (𝑖, 𝑎) ∈ 𝐵. Thus,
node in the concept lattice is defined as a pair ⟨𝐴,𝐵⟩, where the

ormer member is also called an extension 𝐴 ∈ 𝑂 (i.e., a collection
f objects), and the latter a connotation (i.e., collection of attributes).
ndeed, a combination of objects and attributes is needed for a more
omprehensive analysis of the association rules.

The task of the ARM visual algorithms based on the context is
o display association rules extracted from concept lattice. Thus, the
entral area of the visualization interface consists of a 2-dimensional
attice, within which the concepts are positioned as points according to
heir values of support and confidence. Two lines are attached below
nd above the lattice: The former represents the objects which have
risen in the antecedent, while the latter the same in the consequent of
he potential association rule. Indeed, if there is a relationship between
articular object and attribute in the relationship matrix (𝑖, 𝑎) ∈ 𝐵, the
bject is connected with the node (concept) using an edge.

The advantages of the ARM visualization based on a concept lattice
an be summarized as follows: (1) a deeper understanding of associa-
ion rules at the conceptual level, and (2) analyzing the relationships
etween concepts more comprehensively. However, the main weakness
f the visualization is that this is only appropriate for visualizing the
inary values of objects. In order to overcome the problem, Yang
2005) proposed generalized association rules capable of visualizing the
requent rules in an itemset lattice that presents one item in parallel
oordinates. In this way, many-to-many rules can be visualized on the
ne hand, and the large number of rules as selected by the user can
e displayed on the other. Obviously, the advantage of the ARM visu-
lization methods is that the user can limit the number of association
ules for visualization interactively by specifying the parameters 𝑆min
nd 𝐶min.

.4. Metro maps

The concept of information maps enables analysis of data having
‘‘geographical look’’ (Shahaf, Guestrin, & Horvitz, 2012; Shahaf,

uestrin, Horvitz, & Leskovec, 2015). The look can also be prescribed
o mined association rules. Therefore, the idea to visualize these in the
orm of metro maps has become appreciated (Fister & Fister, 2022b).
his means, similar as the metro map can help a user to orientate
im/herself in the environment, the information map can help them
o understand the information hidden in the mined association rules.
7

hereby, the metro map is divided into more metro lines, consisting
f various metro stops. In the information sense, each metro stop
epresents an attribute, while the metro lines a linear sequence of
he attributes (also different association rules). Mutual connections
etween the metro lines reveal how an attribute in one association rule
ffects an attribute in the other, and vice versa. Finally, understanding
he linear sequences of attributes and connections between them can
ven tell stories about the specific information domain.

The metro map is defined mathematically as  = (𝐺,𝛱), where
= (𝐴,𝐸) denotes an attribute graph of vertices 𝐴 = {𝐴1,… , 𝐴𝑀},

epresenting attributes and edges 𝐸 = {𝑟𝑖,… , 𝑟𝑛} representing simple
ules (i.e., rules with one antecedent attribute and one consequent
ttribute), together with incident function 𝜓𝐺 that associates an ordered
air 𝜓𝐺 = (𝑋, 𝑌 ) denoting the implication 𝑋 ⇒ 𝑌 , and 𝛱 is a set of
etro lines 𝜋 ∈ 𝛱 (Fister & Fister, 2022b). The evolutionary algorithm
as applied in Fister and Fister (2022b) for constructing a metro map

hat must obey the following four objectives: (1) maximum path length
, (2) maximum map size 𝐾, (3) high coverage, and (4) high structure
uality.

Indeed, the maximum path length refers to the maximum number
f metro stops (i.e., attributes) in a linear sequence. The maximum map
ize limits the number of metro lines. The coverage is proportional to
he lift interestingness measure, where we were interested in rules with

lift value > 1, determining the degree to which the probability of
ccurrence of the antecedent, and this of the consequent are dependent
n one another. The structure quality ensures that the linear sequences
f the metro stops are coherent in all metro lines.

An example of a metro map obtained by mining the Mushroom
ataset, that was constructed using the parameters 𝜏 = 6 and || = 4,
s illustrated in Fig. 8. Let us notice that the figure is divided into two
arts, i.e., a diagram and a table. The diagram presents the visualized
etro map, while the table the meaning of the metro stops (attributes).

.5. Sankey diagram

Similar to the metro map, the Sankey diagram is also focused on
‘geographical data’’. Additionally, the kind of visualization enables
isualization of hierarchical multivariate data. It is represented as a
raph consisting of nodes representing attributes and edges represent-
ng connectivity by flows across time. In this diagram, the quality of
ach connection is distinguished by its weight that is proportional to
ome of the interestingness measures.

Mathematically, the Sankey diagram is defined as a directed graph
= ⟨𝐾,𝑅⟩, where 𝐾 denotes the maximum path length and 𝑅 is a set

f similar rules (Fister & Fister, 2022a). The rules in this diagram are
resented by the antecedent 𝑋 = {𝐴𝑥1 = 𝑎𝑥1∧,… ,∧𝐴𝑥𝑘 = 𝑎𝑥𝑘}, repre-
enting a set of source nodes, consequent 𝑌 = {𝐴𝑦 = 𝑎𝑦}, representing
set of sink nodes, and interestingness measure 𝑍 = {𝑠𝑢𝑝𝑝, 𝑐𝑜𝑛𝑠, 𝑙𝑖𝑓 𝑡},

eflecting the quality of a particular connection. The quality can also
e expressed with a linear combination of the measures. The similarity
etween two rules 𝑟𝑖 and 𝑟𝑗 is defined as:

𝑖𝑚(𝑟𝑗 , 𝑟𝑗 ) =
|𝐴𝑛𝑡𝑒(𝑟𝑖) ∩ 𝐴𝑛𝑡𝑒(𝑟𝑗 )| + |𝐶𝑜𝑛𝑠(𝑟𝑖) ∩ 𝐶𝑜𝑛𝑠(𝑟𝑗 )|
|𝐴𝑛𝑡𝑒(𝑟𝑖) ∪ 𝐴𝑛𝑡𝑒(𝑟𝑗 )| + |𝐶𝑜𝑛𝑠(𝑟𝑖) ∪ 𝐶𝑜𝑛𝑠(𝑟𝑗 )|

, (12)

where 𝐴𝑛𝑡𝑒(.) denotes a set of antecedent attributes, and 𝐶𝑜𝑛𝑠(.) a set
of consequent ones. However, the 𝑠𝑖𝑚(𝑟𝑖, 𝑟𝑗 ) ∈ [0, 1], where the value 0
means that the rules are not similar, and 1 that the rules are absolutely
similar. The similarities are then combined into an adjacency matrix
𝐴𝑑𝑗, defined as follows:

Adj =
⎡

⎢

⎢

⎣

𝑎1,1 … 𝑎1,𝑀
…

𝑎�̃�,1 … 𝑎𝑀,𝑀 .

⎤

⎥

⎥

⎦

, (13)

The problem of searching for the most similar set of association rules
𝑅 is defined as a Knapsack 0/1 problem (Kellerer, Pferschy, & Pisinger,

2010).
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Fig. 8. Metro map plot powered by R.
Fig. 9. Sankey diagrams for time periods 1 and 2 powered by R.
The construction of the Sankey diagram visualization is divided
into two steps: (1) searching for a set of the most similar association
rules, and (2) visualization using Sankey diagrams. In Fister and Fister
(2022a), the authors proposed a DE meta-heuristic algorithm using the
Knapsack 0/1 deterministic algorithm for determining the set of the
most similar rules, while the R programming language for statistical
computing was applied to solve the second step.

The example of Sankey diagrams is illustrated in Figs. 9(a)–9(b) that
refer to mining the sport training database obtained in more seasons
(i.e., years). This database consists of training load indicators measured
during an implementation of a sport training session. The visualization
is divided into two parts: The first part (Fig. 9(a)) presents the results
of the ARM visualization on sport training data captured during one
season, while the second (Fig. 9(b)) highlights the data obtained during
the next season.

In this way, two historical insights are served to a sport trainer: (1)
In what proportion do the training load indicators contribute to the
whole? and (2) What changes can be observed in the sense of training
load indicators by athletes who have already had the main portion of
training sessions during the previous seasons?

Interestingly, Hlosta, Šebek, and Zendulka (2013) proposed a visu-
alization of evolving association rules using graphs, where the nodes of
the graphs represent items and edges specific association rules. Thus,
the graph-based diagram shows how evolving models mined using the
ARM algorithms and stored into a transaction database can be filtered
and visualized.
8

5.6. Ribbon plot

Ribbon plots are appropriate for visualizing data without self-
intersections, where linearized simplification of events exposes the
significant ones. Although the plot is ideal for analyzing linearized
sequences, it can be applied successfully for visualizing the best as-
sociation rule in NARM, where the proper boundaries need to be
discovered between the numerical attributes. Thus, the attribute with
the best support is compared with the other attributes in the association
rule according to support and confidence. The attributes are ordered
into linear sequence according to the closeness of the first attribute
regarding the others.

The inspiration behind the visualization is presented by the Tour
De France (TDF), i.e., the most famous cycling race in the world.
Similar as in the TDF, where the best hill climbers have more chance
to win the race, the attribute with the higher support also has the
most decisive role in a decision-making process. Indeed, virtual hill
slopes are visualized as triangles situated on a plain, where the left leg
denotes an ascent and the right leg a descent of the virtual hill in a
linear sequence, starting from the left to the right side. In the paper
of Fister et al. (2020), the ascent of the virtual hill is proportional to
the attribute’s support, while the descent to the confidence of the simple
association rule.

Mathematically, the best rule 𝑋 ⇒ 𝑌 consists of an antecedent
𝑋 = {𝐴𝑥 = 𝑎𝑥} and a consequent 𝑌 = {𝐴𝑦1 = 𝑎𝑦1 ,… , 𝐴𝑦𝑘 = 𝑎𝑦𝑘},
where the 𝐴 denotes the best attribute according to the support, and
𝑥
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Fig. 10. Ribbon plot and Glyph-based chart.
simple association rules 𝐴𝑥 ⇒ 𝐴𝑦𝑗 for 𝑗 = 1,… , 𝑘 are ordered as:

𝑐𝑜𝑛𝑓 (𝐴𝑥 ⇒ 𝐴𝑦𝜋1 ) ≥ 𝑐𝑜𝑛𝑓 (𝐴𝑥 ⇒ 𝐴𝑦𝜋𝑘 ), (14)

where 𝜋𝑗 is a permutation of the attributes belonging to the conse-
quent. Moreover, the distances 𝑑𝑖𝑠𝑡𝑗 between the virtual hills are also
proportional to 𝑑𝑖𝑠𝑡𝑗 ∝ 𝑐𝑜𝑛𝑓 (𝐴𝑥 ⇒ 𝐴𝑦𝜋𝑗 ).

An example of a ribbon plot is illustrated in Fig. 10(a) represent-
ing a visualization of the best association rule mined by the uARM-
Solver (Fister & Fister, 2020) (i.e., the framework for NARM using the
nature-inspired algorithms).

The framework was applied for mining a database consisting of
transactions obtained by cycling training sessions. Thus, the best trans-
action is composed from seven attributes 𝐴1,… , 𝐴𝑘+1 ordered into the
association rule:

𝐴𝑥 ⇒ 𝐴𝑦𝜋1 ∧⋯ ∧ 𝐴𝑦𝜋𝑘 .

Seven virtual hills can be observed as can be seen from the figure. While
the first three virtual hills are of comparable height to the first one, the
remainder of the hills are of lower height, and, thus, reflect the lower
inter-dependence.

5.7. Glyph-based plots

Glyph-based plots are suitable for visualizing multivariate data with
more than two attribute dimensions, where different data variables are
presented by a set of visual channels (i.e., shape, size, color, orientation,
curvature, etc.) (Borgo et al., 2013). Indeed, glyphs are devoted for
depicting attributes of data that, typically, appear in collections of
visualized objects. They are founded on the basics of a semiotic theory
that is, in fact, the science of signs (Lagopoulos & Boklund-Lagopoulou,
2020). According to this theory, signs have emerged in three forms:
icons, indices, and symbols. Icons reflect a physical correlation to the
sign. The index expresses a space and time correlation to the object. In
other words, they have an indirect effect on the object. A meta-physic
correlation (i.e., no real correlation) exists between the symbol and the
sign.

An example of glyph-based visualization for ARM was performed
by Hrovat et al. (2015) that analyzed the time series data gathered
from a single athlete (i.e., a cyclist) during a large time period of
training (i.e., the whole season). In this study, the sequential pattern
mining algorithm (Agrawal et al., 1994) was exploited, where the
sequential patterns were discovered by employing the novel trend
interestingness measure for mining sequential patterns. Thus, a time-
series sequences 𝑡𝑠 = ⟨𝑡𝑠1,… , 𝑡𝑠𝑚⟩ were discovered from a transaction
database consisting of sport training performed by a single athlete.

Two trend interestingness measures are defined in the study as fol-
lows: (1) the duration trend ⃖⃖⃖⃖⃖⃗𝑑𝑢𝑡(𝑡𝑠), and (2) the daily trend ⃖⃖⃖⃖⃖⃗𝑑𝑎𝑡(𝑡𝑠). The
former discovers trends within a trend database on a monthly, while
the latter on a daily basis. The trend database is constructed from the
original transaction database by dividing each training session into 𝑚-
time series. Then, the permutation test is performed, after which those
sequential patterns are selected with a minimum 𝑝-value. Obviously,
9

the 𝑝-value is obtained as a result of the permutation test, and serves
as a trend interestingness measure.

Both trend interestingness measures are visualized using glyphs
in order to depict how trends increase or decrease during a specific
training period (Fig. 10(b)). Thus, two glyph symbols are used by the
visualization: (1) level, and (2) variable. The level’s symbol depicts
the trend interestingness measure using an optical channel (i.e., color),
where the intensity training load indicators are presented in different
colors, depending on low, moderate, intensity, and high intensity lev-
els. The variable’s symbol addresses the geometric channels, like: the
cyclist’s speed (as maximum, average or standard deviation), average
heart rate (as minimum, maximum, average and standard deviation),
and altitude (as standard deviation). These symbols are depicted using
different shapes.

6. Taxonomies of the ARM visualization

The ARM visualization methods can be classified according to many
aspects. These aspects depend on the various standpoints from which
they are observed. Indeed, the following questions reflect those stand-
points more precisely:

• How to visualize?
• Which visualization methods to use?
• Which characteristics of association rules are essential to visual-

ize?
• What to visualize?
• Which type of attributes to display?

In the remainder of the section, these queries are described in detail.

6.1. How to visualize?

The aspect ‘‘How to visualize?’’ refers to the mode of how the
exploration and visualization are performed. In line with this, four
different methods are distinguished, as follows (Fig. 11):

• reducing the itemset,
• visual data mining,
• a concept lattice,
• evolving association rules.

Reducing the itemset means that the exploration of association rules
is performed with traditional ARM methods (e.g., Apriori, Eclat, evo-
lutionary algorithms), after which the visualization is performed using
some traditional or new age visualization methods. Visual data mining
comprises those ARM visualization methods that perform the explo-
ration and visualization phases in one step. These methods mine asso-
ciation rules more directionally, where mining can be performed from
some concept, can use meta rules, or can be able to limit the number of
occlusions. The primary pipeline of this concept can be substituted with
an additional ML method that succeeds by ARM, i.e., clustering. The
purpose of clustering is to discover neighborhoods within the mined
rule set and, thus, to contribute to reduce it before visualization. These
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Table 4
Taxonomy of the ARM visualization methods.
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Scatter plot 3 ❹ ● ▲ ■

Two key plot 2+ ❹ ● ▲ ■

Graph-based 2 ❸ ▲ ■

Matrix-based 1 ③ ● ▲ ■

Grouped matrix 2 ❺ ● ▲ ■

Mosaic plot 2 ❶ ● ▲ ■

Double Decker 2 ❶ ● ▲ ■

Ishikawa diagram 1 ❷ ▲ ■ ■

Molecular representation 3 ❶ ● ▲ ■

Concept lattice 1 ❷ ▲ ▲ ■

Metro map 1 ❷ ▲ ▲ ■ ■

Sankey map 2 ❷ ▲ ■

Ribbon plot 2 ❶ ▲ ■ ■

Glyph-based chart 1 ❶ ▲ ■ ■
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v

ethods are known in the study under the name ‘‘advanced reducing
S’’ and ‘‘advanced visual DM’’. The concept lattice enables displaying

he structure of the association rules (i.e., attributes) beside the single
ules. However, this visualization method is reserved for displaying
he binary association rules only. The evolving association rules are
ppropriate for visualizing either warehouse data cubes stored in a
ultidimensional data model, or data suitable for displaying by Sankey
iagrams.

.2. Which visualization methods to use?

This aspect is focused on the question, which visualization method
o use? In line with this, we can consider that the methods are divided
nto traditional and new age visualization methods. The former consists
f charts, like scatter plot, group-based, matrix-based and mosaic plots,
nd their variants, like two-key, grouped-matrix and double Decker
lots (see Table 4 under the column ‘‘Method’’). The new age visu-
lization methods are comprised of an Ishikawa diagram, molecular
epresentation, a concept lattice, metro maps, Sankey diagrams, ribbon
lots, and glyph-based charts.

.3. Which characteristics of association rules are essential to visualize?

The characteristics of the ARM visualization methods refer to: (1)
he number of displayed interestingness measures, (2) the rule set size,
nd (3) the interactivity tools. The number of displayed interesting-
ess rules determines, how many of the interestingness measures are
ncluded into the representation for user. For instance, the scatter plot
s able to display three interestingness measures, while the two-key
lot actually only two, but the third measure is presented indirectly
y a color. In general, the number of measures by various visualization
10

ethods are typically in the range [1, 3]. The rule set size determines the e
umber of association rules to be displayed by the definite visualization
ethod. This number is denoted in Table 4 in the column ‘‘Rule set

ize’’ in circles with numbers within them. The numbers present the
owers of base 10. This means that the grouped matrix can display
05 association rules. The column ‘‘Interactive’’ shows if specific visual-
zation method supports interactive tools (e.g., hover, zoom, pan, drill
own, etc.) or not. Interestingly, although the new age visualization
ethods do not support interactive tools in general, they allow tuning

f parameter settings that enable users some kind of interactivity.

.4. What to visualize?

The aspect, answering to the question ‘‘What to visualize?’’, deals
ith the focus, which an ARM visualization is presenting. Actually,

he ARM visualization can be focused on illustrating: (1) number of
nterestingness measures, (2) rule length, (3) items, (4) RHS and LHS,
nd (5) time series data. The first focus is devoted to displaying the
umber if interestingness measures. The rule length refers to the num-
er of attributes in the visualized association rules. The item focuses on
epicting the attributes of the association rules, while the RHS+LHS
ocus is concentrated on the structure of the more important rules.
inally, the last focus considers the time series data.

Interestingly, the concept lattice and metro maps even cover two
ocuses of displaying association rules, i.e., items (i.e., attributes) and
heir structure. On the other hand, the glyph-based visualization is
edicated for presenting the time series data.

.5. Which type of attributes to display?

The aspect ‘‘Which type of attributes to display?’’ is focused on
isualization based to distinguish the attribute types. In the ARM

xploration/visualization, three attribute types can be identified as
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Table 5
Archive of the ARM visualization papers captured in the brief review.

Nr. Chart How to visual. Reference

1 Association plot Reducing RS Yamada, Funayama, and Yamamoto (2015)
2 Inform. landscape map Reducing RS Blanchard, Guillet, and Briand (2003)
3 Scatter plot Reducing RS Menin et al. (2021)
4 3D visualization Reducing RS Zheng, Guo, Fu, Li, and Li (2017)
5 Spider view Reducing RS Saeed, Sadaf, and Muhammad (2011)
6 Matrix-based Reducing RS Wong, Whitney, and Thomas (1999)
7 ROC graph Reducing RS Kawahara and Kawano (1999)
8 Hasse diagram Reducing RS Jiang, Han, and Hu (2008)

9 Scatter plot Reducing RS Liang et al. (2021)Chord diagram

10 3D visualization Visual DM Chakravarthy and Zhang (2003)
11 TS scatter plot Visual DM Xu, Li, Xiao, and Guo (2009)
12 3D matrix-based Visual DM Couturier, Hamrouni, Yahia, and Nguifo (2007)
13 3D matrix-based Visual DM Couturier, Dubois, Hsu, and Nguifo (2008)
14 3D histogram Visual DM Yahia and Nguifo (2004a)

15 3D-histogram Visual DM Yahia and Nguifo (2004b)Matrix-based

16 Graph-based Visual DM Ounifi, Amdouni, Elhoussine, and Slimane (2016)
17 3D matrix-based Visual DM Wang, Zhang, Chang, Ristaniemi, and Liu (2017)
18 Self organizing map Reducing RS+ Fong, Biuk-Aghai, and Tin (2017)
19 Social network Visual DM+ Gorecki, Slaninová, and Snášel (2011)
follows: (1) categorical, (2) numerical, and (3) binary. Interestingly, the
majority of the traditional visualization methods are suitable for dis-
playing the categorical type of attributes. Usually, displaying attributes
of the numerical type is performed by these visualization methods by
discretizing the numerical attributes into discrete classes. Obviously,
the new age visualization methods are capable of working with the
numerical and binary attributes directly as well.

7. Review of the remainder analyzed ARM visualization papers

The characteristics of the remainder analyzed papers can be sum-
marized in the present section as follows: The majority of the papers
were published for various data mining conferences. As a result, these
include ideas more on the conceptual level, and, therefore, the solutions
that they reveal are not robust enough for using in the everyday real-
world environment. On the other hand, these ideas are not included
into some recognizable ARM visualization system. However, they could
be interesting for the potential readers for sure.

The ARM visualization papers, that were selected for the mentioned
study, are aggregated into Table 5. The table classifies the referenced
papers according to two criteria: (1) chart type and (2) how to visualize.
There are a lot of chart types for ARM visualization appropriate for
interacting with human visual systems (Knaflic, 2015). Let us notice
that those charts, which are not mentioned previously in the study,
are described shortly in the remainder of the section. On the other
hand, four principles of ARM visualization can be identified according
to the second criterion: reducing rule set (attribute ‘‘Reducing RS’’),
visual data mining (attribute ‘‘Visual DM’’), advanced reducing rule
set (attribute ‘‘Reducing RS+’’), and advanced visual mining (attribute
‘‘Visual DM+’’).

Obviously, the reducing RS can be performed on many ways. For
instance, Yamada et al. (2015) applied the conditional association
rule analysis and the association rule analysis with user attributes
for the comprehending questionnaire data. Hence, an association plot
was employed for visualization. The association plot consists of items
represented as circles and conditions described as rhombuses. The items
are connected using arrows and represent association rules. Blanchard
et al. (2003) introduced the rummaging model for filtering association
rules interactively, and included into an experimental prototype called
ARVis. A 3D information landscape was applied to represent the mined
association rules visually. The landscape is divided into two areas: The
first is dedicated to the specific rules, while the second to the general
11
rules. In this way, the good rules are stressed, and comparison with the
worse rules is made more accessible.

A similar model for exploring visualization rules was recommended
by Menin et al. (2021), who represented them through RDF knowledge
graphs. Hence, the traditional methods for visualizing were incorpo-
rated into the prototype ARViz (e.g., scatter plot for an overview
of rules, chord diagram for a subset of rules, and association graph
for itemsets). The gray correlation rule visualization algorithm was
advised by Zheng et al. (2017) that is suitable for considering the
influence of the association rules on the visualization. Thus, the selected
association rules are illustrated using the proprietary 3D visualization,
where the 𝑋-axis shows the association rules, the Y-axis their support
and confidence, and the 𝑍-axis represents the term of the rule. Saeed
et al. (2011) mined a collection of documents consisting of metadata
with the Apriori algorithm, and selected an association rule set for vi-
sualization according to the calculated correlation between documents.
The mining results are visualized using a spider view that is typically
used for displaying the multivariate data, where three or more variables
(i.e., correlated weights) are represented on axes starting from the same
point (i.e., base association rule).

A visualization of association rules for text mining was proposed
by Wong et al. (1999), who represented the many-to-one association
rules using 3D matrix-based chart suitable for depicting the rule-to-
item relationship, Kawahara and Kawano (1999) performed the ARM
on text obtained from own web search engine, and used a Receive
Operating Characteristic (ROC) graph to evaluate the performance and
characteristics of the mined rules. The ROC maps were then employed
for visualization of the results represented in the ROC graph. Boolean
association rules were visualized by Jiang et al. (2008) using the
hierarchical structure for all of them and depicted in a Hasse diagram.

Application of visual DM in agriculture was employed by Liang et al.
(2021), where authors discovered the associations between different
antibiotics of essential bacteria (i.e., multidrug resistance), with which
cows in large-scale farms in China are infected. The association rules
were mined using a weighted Apriori ARM algorithm, while the mined
rule set was reduced using a similarity comparison method based on
Euclidean distance. The results were then visualized using scatter plots
and chord diagrams. A chord diagram is suitable for exposing inter-
relationships between data in a matrix. Indeed, the diagram is based
on the graph, where each node (also item) is represented as a fragment
along the circle’s circumference. At the same time, arcs show it flows
with thicknesses proportional to the significance of the flow (Holten,
2006).
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Visual data mining can be performed in various ways, as found in
our study: Chakravarthy and Zhang (2003) proposed a relational SQL
query language, with which a user can select the suitable association
rule set for visualization interactively from the collection of association
rules stored in tables. The proprietary 3D visualization was developed
for displaying the set of selected mined rules, where the support and
confidence measures are also presented. The correlation visualization
algorithm was proposed for mining the alarm association rules by Xu
et al. (2009), where the time series data were captured using multiple
scatter plots.

Couturier et al. (2007) recommended the integrated framework for
association rule extraction and visualization in one step, which inte-
grated 3D bar visualization method of association rule visualization. In
this study, they detected that their approach suffers from an overlap-
ping between several objects in the 3D visualization (i.e., an occlusion).
Consequently, the occlusion optimization was proposed by Couturier
et al. (2008) that tried to considerable reduce the number of these
phenomena. Contextual exploration of an association rule set was
developed by Yahia and Nguifo (2004a, 2004b), where the additional
knowledge needed for visualization was constructed using the fuzzy
meta-rules. Both studies depicted the selected association rules in a
3D histogram-based visualization that presented the antecedent, con-
sequent, and corresponding support and confidence measures. Ounifi
et al. (2016) solved the problem of extraction and visualization by a 3-
dimensional visualization engine, while Wang et al. (2017) introduced
a 3-dimensional matrix-based visualization system, where the basic
matrix-based approach was extended by rule-to-items mapping.

Fong et al. (2017) supplemented their ARM pipeline based on the
Apriori ARM algorithm with clustering (reducing RS+). The clustered
data were then visualized by a Self Organizing Map (SOM) ML method.
The SOM is an unsupervised neural network model that can be applied
for data clustering and visualization (Shieh & Liao, 2012). Gorecki et al.
(2011) tackled the problem of visualizing similarities using synthetic
social networks. The authors used clustering and association rule min-
ing methods (i.e., visual DM+) to discover and represent potentially
exciting similarities in the data to model a synthetic social network.
Results were visualized using a graph-based approach.

8. ARM visualization systems

The section aims to compile a list of specialized ARM visualization
systems and software packages for any of the ARM visualization meth-
ods. Obviously, this does not present the other visualization libraries,
from which we can develop some methods (e.g., matplotlib in Python,
or ggplot2 in R). On the other hand, the review does not discuss
copyright systems, like PARAS/FIRE (Mukherji et al., 2013) using the
parameter space-based ARM methodology (PARAS) and the framework
for interactive rule exploration (FIRE), that offers the integrated inter-
active framework for association rule mining and visualization. In line
with this, the study focused on presenting this collection of graphics
system that are more commonly used today in the ARM community.
The collection of systems is illustrated in Table 6.

As can be seen from the table, the arulesViz graphics system is
the most complete, due to covering the majority of the visualization
methods dealt with in this review paper. This is an extensive toolbox
in the R-extension package (Hahsler et al., 2011), and works in two
phases: (1) exploration using known ARM methods to which tools for
reducing the huge number of association rules are applied (e.g., filter-
ing, zooming and rearranging), and (2) visualization of results. The
current version of the software supports the following visualization
methods (i.e., graphics): scatter plots, network plots, matrix-based,
graph-based, mosaic plots and parallel coordinate plots.

The other libraries are just a smaller drop in the ocean and,
typically, they solve only limited ARM exploration/visualization ap-
proaches. For example, while the NiaARM is focused at this moment
on only one visualization method (i.e., ribbon plot), the PyARMviz
12
Table 6
List of the ARM graphics systems.

R packages

arulesViz
https://cran.r-project.org/web/
packages/arulesViz/index.html

1.1 Probably the only state-of-the-art
tool that supports many visualization
methods up to this date
1.2 Includes also interactive tools

Python packages

pycaret https:
//github.com/pycaret/pycaret

2.1 Basically low-code machine learning
library in Python
2.2 Association rule mining is a part of
this library
2.3 Library supports 2D and 3D plots of
association rules

NiaARM
(https://github.com/firefly-
cpp/NiaARM)

3.1 Minor module devoted for
visualization
3.2 For now supports only ribbon plots

PyARMViz https://github.com/
Mazeofthemind/PyARMViz

4.1 Python Association Rule
Visualization Library that is loosely
based on ArulesViz
4.2 Development probably stalled (no
commits in the last 2.5 years)

C++ packages

uARMSolver https://github.com/
firefly-cpp/uARMSolver

5.1 Small part of this package is devoted
to the visualization
5.2 Provides the coordinates for metro
plots which can be later visualized using
metro map algorithms

graphics system tends to be what is arulesViz for R, but in Python.
Unfortunately, the development of this graphics software has probably
stalled since the last commit was done almost three years ago. On
the other hand, the development of the NiaARM is not finished yet,
due to the unfinished inclusion of the new ideas in ARM visualization
(e.g., metro maps, Sankey diagram, etc.) that should shortly widen the
usability of the graphics system.

9. Challenges and open problems

Visualizations play a crucial role in data analysis and decision-
making processes. These visualizations enable data professionals to
quickly understand a data set’s patterns, trends, or outliers. Data visu-
alization also presents data to the general public or specific audiences
without technical knowledge in an accessible manner. This aims to
help drive informed decision-making and add enriched meaning to an
otherwise tedious database (Coursera Inc., 2023).

In summary, ARM visualizations provide decision-makers with a
powerful tool for understanding, analyzing, and communicating com-
plex information. They enhance comprehension, support pattern recog-
nition, aid exploration, and discovery, and facilitate effective communi-
cation. However, it is essential to choose appropriate visualization tech-
niques, consider scalability, and understand the limitations associated
with data quality and interpretation (Cairo, 2012).

After a deep analysis of the ARM visualization methods, the one-
focused view on the visualization rule set is usually insufficient for the
user. Indeed, they often apply top-down approach by analyzing and
visualizing the rule set. According to this approach, the ARM visualiza-
tion is performed in three levels corresponding to different visualization
focuses: At the higher level (first level), an overview of association rules
in the visualization rule set is illustrated using various ARM measures
(most often support and confidence). The scatter plots are typically
used for these purposes, where each association rule is presented as a
dot in a chart. At the next level (second level), connections between
selected rules are observed. Thus, the ARM visualization is focused
on RHS/LHS, where the charts like matrix-based, grouped matrix,
and Sankey diagrams, are more suitable. At the last level (i.e., third
level), the ARM visualization focus is devoted to items, where charts,

https://cran.r-project.org/web/packages/arulesViz/index.html
https://cran.r-project.org/web/packages/arulesViz/index.html
https://github.com/pycaret/pycaret
https://github.com/pycaret/pycaret
https://github.com/firefly-cpp/NiaARM
https://github.com/firefly-cpp/NiaARM
https://github.com/Mazeofthemind/PyARMViz
https://github.com/Mazeofthemind/PyARMViz
https://github.com/firefly-cpp/uARMSolver
https://github.com/firefly-cpp/uARMSolver
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like molecular representation, chord diagram, and graph-based, are
more preferable. Interestingly, some ARM visualizations from this level
support the single rule only, where the charts, like spider views, mosaic
plots, double Decker, and ribbon plots, are more appropriately.

For instance, the arulesViz software package (Hahsler et al., 2011)
offers a spectrum of solutions useful for visualization with traditional
ARM visualization methods. In this package, the scatter plot is applied
as an entry point for an analysis of how to distinguish the similarity of
association rules according to support and confidence interestingness
measures. Then, the matrix-based visualization can be applied, capable
of organizing association rules into a matrix, where the antecedent
and consequent items can be distinguished. Finally, the graph-based
methods are recommended by authors, in order to get the user the
broadest view of the relationships between individual items reflecting,
their memberships in different association rules.

Along with the mentioned ARM visualization levels, the recom-
mended size of the visualization rule set decreases by increasing the
levels. Indeed, if the scatter plot recommends visualizing up to 1000,
the visualization methods of the second level are less than 1000, and
the third level visualization methods are up to 100 association rules.

In summary, the problems caused by using the traditional ARM
visualization methods can be aggregated as follows (Shen et al., 2020):

• the domain knowledge is not displayed sufficiently, i.e., the rules
are displayed from a single point of view,

• the visualization of background knowledge is not enough for
sharing, i.e., the role and relationship of global information is lost
in the context of the background knowledge,

• the use and exploration of potential knowledge hidden in non-
connected attributes are reduced.

owever, the new age ARM visualization methods tries to reveal the
forementioned problems. Moreover, some of these methods are even
ble to tell stories in mined data (e.g., metro maps), while the others
re able to analyze the information from the history point of view
e.g., Sankey diagrams).

Although searching for a new age ARM visualization methods al-
ost stopped after the rapid development of the traditional ARM

isualization methods in the past, in our opinion, the future of the
RM visualization remains in the development of the new age ARM
isualization methods. These methods might consolidate displaying
tems as well as the structure of the association rules. Additionally,
hese need to be independent of the attribute types.

The main advantage of the ARM visualization undoubtedly presents
he interactivity of the ARM visualization methods. Interactive visual-
zation improves the user’s experience and interpretation of the results.
lthough several popular implementations of the traditional ARM visu-
lization methods (e.g., arulesViz R-package by Hahsler and Karpienko
2017), and InterVisAR by Cheng, Sha, and Wang (2016)) already offer
ome interactive tools (e.g., hover, zoom, pan, drill down, inspect,
rush), these tools are usually missing in some of the observed new age
RM visualization methods (e.g., metro maps, Sankey diagram, ribbon
lot, glyph-based plot). Obviously, these tools need to be included into
heir visualization in the future.

0. Conclusions

Data mining methods today suffer from a lot of comprehension of
he mass results they produce. In line with this, a new domain of AI,
he so-called XAI, has emerged that searches for methods which will be
uitable to present these results clearly to the user. The visualization
ethods are one of the useful tools for helping users understand the

esults of different data mining methods better.
The present study has revised the most important visualization

ethods associated with ARM. Consequently, the most important ARM
isualization methods, published in research papers, have been identi-
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ied, analyzed, and classified. Thus, the research papers were selected
from the Google Scholar database, the most complete database to which
also the ACM Digital Library and IEEE Xplore were added due to
improve the search results reliability. The ARM visualization methods
are divided into traditional and new age methods. Moreover, they
have been classified according to the characteristics of the displayed
association rules, the focus of visualization, and the types of attributes.

The potential reader of this work will be able to get deeper overview
of the ARM exploration/visualization process. Furthermore, it encour-
ages readers to open new avenues of potential research. According
to the research paper review, there is a huge opportunity to use the
knowledge, especially in biological/medical sciences.
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