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Abstract: Games can be more than just a form of entertainment. Game spaces can be used to test
different research ideas quickly, simulate real-life environments, develop non-playable characters
(game agents) that interact alongside human players and much more. Game agents are becoming
increasingly sophisticated as the collaboration between game agents and humans only continues
to grow, and there is an increasing need to better understand game players’ workings. Therefore,
this work addresses the digital characterization (DC) of various game players based on the game
feature values found in a game space, and based on the actions gathered from player interactions
with the game space. High-confidence actions are extracted from rules created with association rule
mining, utilizing advanced evolutionary algorithms (e.g., differential evolution) on the dataset of
feature values. These high-confidence actions are used in the characterization process, resulting
in the DC description of each player. The main research agenda of this study is to determine
whether DCs manage to capture the essence of players’ action style behavior. Experiments reveal that
characterizations do indeed capture behavior nuances, and consequently open up many research
possibilities in the domains of player modeling, analyzing the behavior of different players and
automatic policy creation, which can possibly be used for utilization in future simulations.

Keywords: association rule mining; digital characterization; game agent; game player; real-time
strategy games

MSC: 68Txx; 68T42

1. Introduction

Games are a great form of entertainment, whether they are board games (e.g., Monopoly™)
between friends or an organized video game multiplayer competition with a large pool of
rewards available. However, games can also be a significant source of data when studying
research questions in various fields (e.g., human–computer interaction) and can therefore
act as a reliable scientific tool [1]. One of the important aspects regarding video games
is research concerning actions. By examining the actions executed by players during
games, researchers can generate innovative theories on player behavior or verify their
hypotheses. Such research can also uncover previously unconsidered research topics.
An important sub-domain within action research is action abstraction, which attempts
to simplify the representation of complex actions into more manageable components (a
detailed description of the action abstraction process is provided in the related work section).
Such abstracted actions can then be efficiently used by different intelligent algorithms
(e.g., machine learning optimization algorithms) in large game spaces.

A game space can be presented as a high-dimensional space of game variants
(i.e., adjustable game parameters tune a game toward achieving a desirable player ex-
perience, and a unique parameter setting is called a game variant) [2]. When human
players begin to interact with virtual game spaces, the game spaces must be fun, because
this is what brings enjoyment to the players when they are engaged with the game [3]. To
keep the player interested, the need for computer-controlled game players (game agents)
begins to form swiftly. However, game agents must offer more than just a random execution
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of game actions (e.g., imagine a car race where none of the cars stick to the racetrack and
just drive around randomly). They must be intelligent.

The computer-controlled game agent is intelligent if it selects actions that help the
player to accomplish their goals autonomously [4]. For example, in a game of chess, one
way to achieve competition victory is to force an opponent into a checkmate position. The
king piece is under attack, or in “check”, if it cannot move to any other position, if it cannot
be protected by other game pieces and if the piece that attacked it cannot be taken. In the
real-time strategy (RTS) games genre [5], one way to win the game is by eliminating all the
opponent’s structures and units.

For several decades, RTS games have offered gamers challenging gameplay and
emphasize strategic and tactical decision making. As a result of their demanding gameplay,
RTS games have also been used in game research. Players must carefully operate armies of
units to gain an advantage over their opponent. The prediction of the opponent’s intentions,
tactics and strategies is therefore essential when the game agent must choose which actions
can help them achieve their goals in the given game environment, e.g., when predicting the
movements of the opponent’s forces to perform appropriate counter-moves [6]. The RTS
player must also be skilled in resource management with unit production and deployment;
construction of the base; upgrading buildings; being smart about the extensive technology
tree, which allows the research of new (or better) units and technologies; and sometimes
even being versed in diplomacy. Split-second decisions and fast-paced real-time gameplay
also heavily characterize RTS games.

Data mining is an interdisciplinary field inspired by the principles of other scientific
areas, such as mathematics, statistics and physics. It is primarily intended for discovering
hidden information in data. Data mining encompasses several methods, and association
rule mining (ARM) is one of them, which is a well-known technique intended for identifying
the relationships between attributes in transaction databases. Loosely speaking, association
rules reveal information between items (e.g., “chocolate is followed by banana,” meaning
customers who buy chocolate also buy bananas). The first applications of ARM were
tailored to the applications of market basket analysis, where association rules helped
in the decision process of, for example, how to place products on supermarket shelves.
Later, ARM began to be used in many applications, ranging from medicine to data science
and engineering.

To predict an opponent’s intentions, we previously proposed a method for opponent
game policy modeling using ARM (ogpmARM) [7]. In this work, the formerly built
method was extended with additional components, and the result was a new method
called digital characterization with ARM (dcARM). The dcARM method was adapted to
allow for a range of purposes besides only opponent modeling, such as for game agents’
digital characterization (DC) (i.e., an action-based digital representation of the game player).
Generally speaking, the DC captures the essence of the players by reflecting their action
styles, behaviors and playing preferences. Specifically, DC, from a technical point of view,
represents an action pattern of the whole player action behavior for a given game time
interval (e.g., the last one hundred frames) with a set frame step (e.g., the resolution of
every five frames).

The contributions of this paper regarding the dcARM method are as follows:

(a) To test the method in two experiments of various complexities. The first is a case
study on the simple (yet powerful) game of Rock–Paper–Scissors (RPS). RPS is a game
typically played between two players, in which each player simultaneously chooses
one of three actions: rock, paper or scissors. A set of rules determines the winner:
rock beats scissors, scissors beat paper and paper beats rock (such game relationships
between rock, paper and scissors can also be found in several natural systems [8]).
The second experiment is carried out in the complex environment of RTS games.

(b) To perform a DC analysis and a time analysis on the DCs created using the fea-
ture and action data of five game agents while they operate in a complex RTS
game environment.
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(c) To establish the DC method’s suitability for real-time (online/in-game) usage capabilities.
(d) To discuss its possible usage in automated policy creations, in future simulation pur-

poses or with a DC serving as a vital part in the game agent’s decision-making process.

Some of the novelties presented in this article are as follows:

(a) To our knowledge, this is the first approach for using association rule mining in a game
domain where the mined rules are not used in their entirety (e.g., for building a game
knowledge database), but only as guiding factors (by utilizing rules thresholds in
descending order), allowing for the discovery and extraction of actions with a higher
confidence value, and, consequently, using that information for building quality
abstracted player action representations.

(b) The method creates explainable (interpretable) player action representations
(e.g., deep-learning-based agents/models are hard to interpret [9], but this method’s
action representations can be interpreted more easily).

(c) The approach confirms that the output of the dcARM method shows differences in
game agent action usages (i.e., which actions are used more and which are used less).

(d) By comparing the differences in how agents are using actions, the (sub)patterns of
comparable behavior can be established between different agents.

The structure of this article is as follows. The related work belonging to a game domain
connected to this research is presented in the Section 2. Section 3 presents the materials and
methods. In Section 4, a case study of the game environment of the RPS game proves the
dcARM’s ability to create reliable DCs. Section 5 follows, with an experiment in an RTS
simulation environment, and Section 6 provides a discussion covering all the findings of
the Section 5 experiment. The article concludes with final remarks in Section 7.

2. Related Work

This section reviews the related work concerning game actions in real-time environ-
ments, focusing on creating models, patterns and policies.

To play a game, the game agent needs to have at least an observable game state and a
set of available actions [10]. Most games assume the existence of some model of the game
that allows one to evaluate a current game state and to predict a new game state after
executing a certain action [11,12]. To predict the next meaningful sequence of actions that
would contribute toward the ultimate game agent goals, the game agents utilize various
techniques (e.g., a decision tree search). The number of units that can make actions in each
turn is also large, and the game agent needs to handle them all simultaneously. However,
an exhaustive evaluation of every possible action for each unit in the game space is not
feasible due to the vast number of combinations. For example, in StarCraft™, this number
can reach between 3050 and 30200 [13].

Furthermore, deciding which actions would be the most beneficial is not straightfor-
ward. The agent must usually peruse the long-term rewards with a sequence of actions
(e.g., with reinforcement learning techniques [14]). Consequently, specific patterns emerge
from action sequences. These patterns can be used for simplification. Instead of gener-
ating specific commands one by one, the game agent can apply a sequence of actions
corresponding to different patterns.

The RTS game genre used in this article is an example of games operating under strict
real-time constraints [15]. In casual chess gameplay, whether the player makes a move in
one or five minutes is irrelevant for gameplay. RTS games operate in dedicated time slices.
A time slice is allocated between two game frames during which a game agent can perform
some actions. The duration of the time slice is usually less than 100 [16] and around 30 [17]
or 42 [18] milliseconds. If that time slice is missed, the game iterates to the next game frame,
where the game agent is eventually given another opportunity to decide which actions
should be executed.

Some simplification is required to cope with the complexity and severe timing con-
straints of RTS games. The most common simplification is the hierarchy abstraction [13].
The decision processes are usually divided into three layers: reaction control, tactics and
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strategy. The reaction control layer is responsible for micromanaging the units, the tactic
layer deals with groups of related units, and the strategic layer is responsible for achieving
the game’s ultimate objective. The dedicated game agent sub-component is allocated
for each layer. Depending on the game scenario, these layers can be further divided
horizontally or vertically.

Next are the game model and action abstractions [19,20]. The first reduces the game-
state complexity by reducing the level of detail, and the second generalizes the gameplay
actions. The reaction control layer requires a detailed description of the game state, focused
only on the location of the specific unit and its surroundings in the game world. It operates
with game actions and changes the game state. The tactical layer works on the broader
area with fewer details (e.g., with the estimated attack power or defense strength of a
group of units). The actions work on the grouping of units and must be translated into the
specific game actions by the reaction control layer. The strategic layer is responsible for
the general policy of the gameplay. It makes decisions regarding goals, roles and relations
between the unit groups. For example, the rushing policy focuses all resources on storming
the opponent at the start of the game. Of course, the strategic layer also tries to detect
the opponent’s policy to counteract its actions properly. All the abstractions reduce the
processing time of the game agent to work in real time significantly [21].

The game agent can split its computations between the frames and choose if and at
what time it will execute specific actions on each layer. The estimated time intervals for
each hierarchical layer are [22] up to one second for the reaction control layer, thirty to sixty
seconds for the tactical layer and three minutes or more for the strategic layer.

3. Materials and Methods

This section first establishes how the game agents utilize different types of knowledge
acquisition and categorizes the dcARM method according to the knowledge acquisition
category. Then, descriptions of the feature and action are presented, which are crucial
method inputs when combined in a record set. Second, ARM is explained, which is a
fundamental component of the method. Third, the software built by the usage of ARM is
depicted. Fourth, ARM-DE (differential evolution) algorithm descriptions are provided.
Last, the dcARM method pseudocode and the structure of digital characterization with the
dcARM method are introduced.

3.1. Game Knowledge Acquisition

Game agents can acquire knowledge in several ways, for example, by interacting with
the environment and extracting information from it (automatic approach), with beforehand
provision of the knowledge (i.e., a hand-made expert knowledge approach) or by utilizing
both techniques [23]. The entirely hand-made expert knowledge incorporation can be
intractable for many games (i.e., the game spaces are too dynamic, vast and hard to predict),
as well as consuming both energy and time [24]. Both techniques are used in our previous
work on the ogpmARM method. For the dcARM method, the expert knowledge approach
is only kept in the first step of the method, where features and actions are defined, and the
other steps are automatic.

The feature is a low-dimensional representation of the original data [25], where, in
the case of the game domain, it can be said that the original information is represented in
the form of the full game state (i.e., physical and abstract representation of the map, the
state of all players, the positions and states of all units on the map, etc.). Only the features
relevant to the game space that the player is in are selected in the case of the dcARM
method. The process of hand feature selection is inspired by similar work, such as [26]
(e.g., the number of each unit type and gathered resources). In future work, the focus will
also be on automatizing the feature selection step.

The player plays the game through the execution of an action, or, depending on the
game, through many actions. These actions are combined with feature values extracted
from the game state and are saved in a record set. The record set can be seen as a history
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of a game played so far by the player, or (some sort of) as a replay that usually encodes
expert domain knowledge of the gameplay [26], because it holds the information as well as
all the actions that the player performed. It must be stated that, because only some of the
information value is saved from the game state (via feature abstractions), the replay does
not allow for a complete recreation of the gameplay but still encapsulates its essence.

3.2. Stochastic Population-Based Nature-Inspired Algorithms for Association Rule Mining

In this subsection, first, the descriptions are made regarding the stochastic population-
based nature-inspired algorithms, numeric association rule mining and uARMSolver soft-
ware. The action extraction procedure and action intensity pattern are established second.

3.2.1. Stochastic Population-Based Nature-Inspired Algorithms

The term stochastic population-based nature-inspired algorithms depicts the search
algorithms inspired mainly by the behavior of natural and biological systems. These al-
gorithms are intended to solve complex optimization problems in both continuous and
discrete domains. Evolutionary and swarm intelligence algorithms are the most common
members of this group of algorithms. Both groups consist of individuals that have under-
gone several variation operators (e.g., crossover and mutation) and form a new population.
One of the most state-of-the-art algorithms in current use is differential evolution (DE),
an evolutionary algorithm in which individuals are represented as vectors consisting of
floating-point values. DE is a compelling method for optimization that achieves robust
results when dealing with optimization problems in continuous yet discrete domains. DE
is also notable for having a low number of control parameters. Besides the population
size parameter, DE has two parameters: F and CR. F is a scaling factor, and CR is the
crossover rate [27]. Several variants based on DE have also won many CEC competitions
for numerical optimization.

3.2.2. Numeric Association Rule Mining (NARM)

ARM is a technique proposed initially for market basket analysis to search for relation-
ships between attributes in a database [28–30]. The association rules consist of two parts,
representing relationships between attributes: the left part is the antecedent, and the right
is a consequent. The quality of the association rules is evaluated using quality measures.
The most common are support and confidence, but lift, coverage and amplitude are also
widely used measures. Readers are invited to consult [31] for more information about
quality measures. The first ARM approaches were only able to deal with categorical data,
but later, more enhanced methods appeared that were also able to work with attributes in
the continuous domain. These approaches are usually called numerical association rule
mining (NARM) [31].

Due to the complexity of such problems, meaning dealing with continuous and discrete
attributes, most of the enhanced methods were built on stochastic population-based nature-
inspired algorithms, because they can search in a vast search space.

3.2.3. uARMSolver Software

uARMSolver [32] is an open-source implementation of algorithms for dealing with
NARM. uARMSolver is written entirely in C++ and allows fast searching for association
rules. The abovementioned DE algorithm is included as a base algorithm and is modified to
deal with NARM problems. The significant advantage of uARMSolver is that the software
covers almost all ARM steps—preprocessing, mining and visualization—which is also
partly supported by the current version of this software.

3.2.4. ARM-DE (Differential Evolution) Algorithm

uARMSolver is fundamentally based on the ARM-DE algorithm, in which each in-
dividual in the evolutionary algorithm is represented as a real valued vector covering
numerical and categorical attributes.
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The numerical attribute is represented in this vector by corresponding minimum and
maximum boundaries determining domain values from which the attribute can be drawn.
On the other hand, the categorical attribute is represented by the real value drawn from
the interval [0, 1] [33]. The fitness function is modeled as a weighted sum of support and
confidence evaluation metrics. In ARM-DE, the optimization process is governed by DE,
but uARMSolver can operate with any other population-based metaheuristic algorithm.

3.2.5. Action Extraction Procedure and Action Intensity Pattern

Action extraction from the ARM rules is a straightforward procedure:

1. ARM creates the ruleset based on the feature and action dataset provided to it. If the
player makes multiple actions for a given frame, the features of that game frame are
duplicated, with only the actions being differing factors between such records. The
dataset for ARM includes all the records for a period of maximum passed time tmpt.

2. A set of actions are defined, which are extracted from the ruleset, the action counter
set and the threshold at which searching for actions is stopped.

3. The ruleset is traversed rule by rule in a threshold-descending manner (i.e., from rules
with the highest threshold downward toward the rules with the lowest threshold)
until the stopping threshold is met.

4. Each rule is parsed and searched for the inclusion of any actions from the set of actions.
5. The counter for that specific action is increased if any action from the set of actions is

found in the rule.

To the extracted action counter set, the additional abstracted information, such as
percentage distributions and the most represented action(s) of the set (action(s) with
maximum value(s)), can be added (with other extensions of abstracted information also
being possible). The action set with additionally abstracted information added is called the
action intensity pattern (AIP) and is shown in Figure 1.
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An example of one such AIP would be as follows:

• Frame number: 20 (e.g., included frames are in the interval [1, 20]).
• Extracted actions: 1, 1, 0, 0, 5, 1.
• Percentage distributions of extracted actions: 12.5%, 12.5%, 0%, 0%, 62.5%, 12.5%.
• Maximum action (62.5%): 4.
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3.3. dcARM Method and the Game P layer’s Digital Characterization

Algorithm 1 is the pseudocode of the dcARM method.
The first step of the pseudocode defines the manually chosen features and actions,

the rule confidence threshold θcv, the maximum passed time for keeping records tmpt, the
maximum passed time for keeping an AIP tAIP and the sampling rate (e.g., periodically
every 20 frames). The feature values are saved in the record set in the second step. In step
three, ARM is run with the record set. Steps four and five are modified extensively for the
dcARM method. In the previous ogpmARM method, the fourth step was used to match
the extracted actions from rules to the predefined policies, but in the dcARM method, an
AIP is now created instead. AIPs are the main elements for updating the DC of a player.

Algorithm 1: Pseudocode of the dcARM method

// Step 1—Define input arguments
Input: names (set of names of relevant game state features and a player executed actions), θcv
(rule confidence value threshold), tmpt (maximum passed time for keeping records), tAIP
(maximum passed time for keeping an AIP), sampRat (sampling rate)
Output: Digital Characterization (DC) of a player/game agent

set digChar = initializeEmpty() // init. digital characterization
currentFrame = 0
do

if currentFrame mod sampRat equals 0 then
// Step 2—Save the feature values in the record set
set playerAction = getPlayerAction(playerID, gameState)
set featureValues = getFeatureValues(playerID, gameState, names)
recordSet = addToRecordSet(recordSet, listOfActions(playerAction), featureValues)
recordSet = removeRecordsOverTimeLimit(tmpt)
// Step 3—Execute ARM and extract actions from rules
setOfActions = extractActions(executeARM(recordSet), θcv)
// Step 4—Create action intensity pattern
AIP = createActIntPat(setOfActions)
// Step 5—Digital characterization of a game agent
digChar = removeOldActIntPatOverTimeLimit(playerID, tAIP)
digChar = updateDigitalCharOfAgent(playerID, AIP)

end if
// DC can be used for automated game policy creations
// DC can be used in future simulations
// DC as the driver of Game Agents’ decision process
// DC can be used for opponent modeling
// . . .

while gameInProgress(gameState)

The structure of the DC can be observed in Figure 2.
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4. Case Study: Rock–Paper–Scissors Game

The RPS game is a simple hand game in which two players compete for victory and
defeat using three different hand signs (rock, paper or scissors) [34]. The rules of the game
are straightforward. Rock wins over scissors (“the rock breaks the scissors”), scissors win
over paper (“the scissors cut the paper”), and paper wins over rock (“the paper covers
the rock”). It is easily observed that these three rules, each consisting of two actions with
different dominances, form a cycle. In other words, due to the present spatial and temporal
behaviors that allow for an understanding of properties in various cyclic systems, the RPS
game is also known as one of the simplest cyclic dominance models [35].

The reason for selecting this game as a case is due to three factors:

(a) The simplicity of incorporating only three non-durative and instant actions/hands.
(b) The possibility of inferring the other player’s strategy and its win rate [36].
(c) The RPS cyclic game rule principles can be scaled to higher complexities (e.g., the Rock–

Scissors–Paper–Lizard–Spock game [37]) and can incorporate different game mechan-
ics/abstractions (e.g., the RPS system as an RTS game cyclic strategy selection [38]),
which opens up possibilities for research in many more (game) (sub)domains.

Due to the possibility of inferring the player’s win rate in RPS, the dcARM method is
tested on two player strategies: a strategy incorporating non-biased random action taking,
and a strategy with biased random action taking.

In summary, using two different strategies, determining whether a successful dis-
tinguishment between the non-biased and biased action taking with dcARM is possible
(i.e., testing whether the AIPs indicate the bias when the biased action is being used).

4.1. Experimental Settings

Hardware: The case study is carried out on an Intel(R) Core(TM) i7-9700 CPU @
3.00 GHz, with eight cores and 32 GB RAM. Software: IntelliJ IDEA 2021.1.1 tools with
JDK 13.0.2 on an OS Win 10 Pro are utilized in the experiment. uARMSolver uses the
(default) following values: algorithm = DE, DE_NP = 100 (population size), DE_FES = 1000
(number of function evaluations), DE_RUNS = 1 (number of DE runs), DE_F = 0.5 (scaling
factor), DE_CR = 0.9 (crossover rate) and DE_STRATEGY = 6 (identifier of the DE strategy
implemented in uARMSolver).

In the case study experiment, for the first strategy scenario, both players execute
actions at random. In contrast, in the second strategy, the first player has a fixed bias
toward using a pre-set action (i.e., for the fixed percentage of the number of games, it picks
the pre-set action). In the other cases, any of the three actions are chosen at random. The
game is run in blocks, in which each block represents fifty thousand games (50 K), reflected
in 50 K feature value records saved in the record set. One feature value record is formatted
as follows: the number of rocks (chosen by players), the number of papers, the number of
scissors and the action that the first player played. Each block is executed 100 times for
two reasons/benefits: first, multiple executions of each block must be carried out for the
results of an experiment to be representative (i.e., the game is stochastic due to the usage
of random action taking), and second, the value 100 coincides with the percentage logic,
making the results easier to interpret (e.g., if, in the 33 blocks, the maximum number of
times that the action taken is rock, it can be easier to infer that the distribution of rocks
during the experiment run is 33 percent). The dcARM method is executed on the record set
of only one player for every single block of games.

4.2. Results of the Case Study Experiment

The results of the case study experiment are presented in Tables 1 and 2. Table 1 shows
the summary (across all blocks) of how many times each action achieved the maximum
action count in rules per block. Table 2 presents the averaged (across all blocks) percentage
distributions of counted actions per block. The data regarding the averages (across all
blocks) of the counted actions per block are also included in Appendix A in Table A1.



Mathematics 2023, 11, 1243 9 of 35

Table 1. Summary (across all blocks) of how often each action achieves the maximum action count in rules per block.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0% 0/1/28/38/33 0/2/29/38/31 0/4/27/37/32 0/2/30/32/36 0/2/29/35/34 0/6/31/35/28 0/13/36/23/28 E: 100 E: 100 E: 100
10% 0/4/39/27/30 0/1/40/31/28 0/2/35/34/29 0/5/50/29/16 0/2/63/19/16 0/5/51/25/19 0/1/96/1/2 43/0/57/0/0 E: 100 E: 100
20% 0/3/43/25/29 0/2/46/27/25 0/2/42/24/32 0/11/52/19/18 0/3/73/17/7 0/4/78/8/10 0/2/98/0/0 0/0/100/0/0 E: 100 E: 100
30% 0/4/74/8/14 0/1/81/7/11 0/1/86/6/7 0/2/89/4/5 0/0/99/0/1 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 E: 100 E: 100
40% 0/2/84/6/8 0/4/86/4/6 0/2/85/7/6 0/1/97/1/1 0/0/100/0/0 0/0/99/1/0 0/0/100/0/0 0/0/100/0/0 E: 100 E: 100
50% 0/1/89/7/3 0/1/89/5/5 0/1/89/2/8 0/0/99/1/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 E: 100 E: 100
60% 0/0/93/5/2 0/2/84/6/8 0/2/96/2/0 0/0/100/0/0 0/0/99/0/1 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 E: 100
70% 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 E: 100
80% 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 E: 100
90% 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 E: 100

100% 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0 0/0/100/0/0

Table 2. Averaged (across all blocks) percentage distributions of counted actions per block.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0% 31.71/33.56/34.73 33.28/34.35/32.37 33.48/32.68/33.84 33.51/32.38/34.11 32.33/34.66/33.01 32.9/33.97/33.13 35.87/30.59/33.54 0/0/0 0/0/0 0/0/0
10% 36.14/32/31.86 35.71/32.5/31.79 35.77/32.16/32.07 38.44/32.4/29.16 40.66/29.31/30.03 40.02/30.31/29.67 59.96/19.28/20.76 100/0/0 0/0/0 0/0/0
20% 37.36/30.64/32 37.66/31.23/31.11 37.03/31.28/31.69 39.05/31.86/29.09 43.09/30.41/26.5 43.69/29.42/26.89 60.74/19.87/19.39 100/0/0 0/0/0 0/0/0
30% 43.44/27.98/28.58 44.34/27.1/28.56 44.87/27.25/27.88 47.07/27.11/25.82 57.27/20.92/21.81 60.83/19.84/19.33 73.79/13.14/13.07 100/0/0 0/0/0 0/0/0
40% 45.09/26.37/28.54 45.66/27.15/27.19 46.7/27.07/26.23 54.46/23.48/22.06 58.15/21.44/20.41 61.44/19.45/19.11 78.33/10.72/10.95 100/0/0 0/0/0 0/0/0
50% 47.24/25.75/27.01 47.29/27.77/24.94 47.95/25.19/26.86 56.46/20.44/23.1 58.9/21.11/19.99 64.93/17.13/17.94 80.14/9.8/10.06 100/0/0 0/0/0 0/0/0
60% 48.02/27.03/24.95 47.55/26/26.45 52.18/23.16/24.66 58.38/20.9/20.72 59.88/20.11/20.01 66.64/16.94/16.42 84.38/7.71/7.91 100/0/0 100/0/0 0/0/0
70% 65.24/17.51/17.25 65.46/16.95/17.58 68.48/15.7/15.82 74.88/11.81/13.31 76.49/11.66/11.85 80.35/9.92/9.73 96.39/1.82/1.79 100/0/0 100/0/0 0/0/0
80% 64.77/17.19/18.04 64.99/17.85/17.16 74.48/12.93/12.59 76.3/11.38/12.32 76.96/11.41/11.63 79.93/9.72/10.35 100/0/0 100/0/0 100/0/0 0/0/0
90% 69.55/15.21/15.24 73.64/13.37/12.99 78.94/11.11/9.95 80.25/9.41/10.34 80.78/9.35/9.87 94.15/2.92/2.93 100/0/0 100/0/0 100/0/0 0/0/0

100% 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0
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The tables range from 0 to 100 percent bias toward a specific action and from a
0.1 to 1.0 rule confidence value threshold. The rule confidence value of 0.0 is omitted from
the tables, because a rule with a confidence value of 0.0 is a non-meaningful rule (i.e., it
provides no trust). The first line of each table shows the results of the first strategy (no
action bias present), and the rest of the table results belong to the second strategy (biased
action). For the case study, the rock action is chosen to represent a biased action. In the
case of selecting two other actions as biased, the results should be very similar due to the
equality of actions (i.e., their strength is the same).

Each cell in Table 1 holds five values. The first value represents the number of times
actions came up empty (E) (i.e., if no actions are found in the rules equal to or above the
rule confidence value threshold). The second value represents the number of times that at
least two actions achieve the same maximum value (i.e., when two or three actions achieve
the same action count from the set of rules of a single block). The third value is the number
of times that only rock has the maximum value, the fourth is the number of times that only
paper has the maximum value, and the fifth is the number of times that only scissors have
the maximum value.

Table 2 shows the calculated average percentage distributions. The percentage distribu-
tions are calculated for all three blocks’ actions. The average of the percentage distributions
is calculated for all blocks except for the blocks marked as (E); these are omitted from the
average calculations to maintain the focus of the case study on action percentages alone
(i.e., all the percentages of actions sum to one hundred, which allows for a more transparent
presentation of the results). (E)s are, for the same purpose, also omitted from Table A1. In
Tables 2 and A1, the values in each cell represent the measured values for RPS actions in
the following order: rock, paper and scissors (e.g., the measured values 100/0/0 in Table 2
show that the rock action has a 100 percent average distribution (across all blocks) of the
counted actions per block).

4.3. Short Discussion of the Results of the Case Study Experiment

The gathered data presented in Tables 1, 2 and A1 show that the biased rock action
values are higher than the values of the other two non-biased actions as soon as the biased
percentage increases above 0 percent. For example, in Table 1, the 10 percent biased rock
action values for a threshold of 0.7 are 96 (out of 100), the value in Table 2 is 59.96 percent,
and the other two actions receive 19.28 and 20.76 percent. This is a clear indicator of the
method’s capability to create viable AIPs, because the data reveal even a 10 percent increase
in the bias of specific actions.

It is also clear that the threshold value parameter is vital in choosing the AIP into
which a high degree of confidence is entrusted. For example, from the results from
Table 1, if the 0 percent and 0.7 threshold values (0/13/36/23/28) and the 10 percent
and 0.1 threshold values (0/4/39/27/30) are compared, they are very similar. This means
that, if the information regarding which data are linked to 0 percent and which are linked to
10 percent is not also provided, a high degree of confidence distinguishment between both
results is not possible. However, when comparing the 0 percent record (0/13/36/23/28)
with the 10 percent record (0/1/96/1/2) for a threshold of 0.7, the difference between both
rock action values (36 for 0 percent and 96 for 10 percent) is noticeable.

When observing the data in Table 1, the thresholds of 0.7 and 0.8 stand out as the best
options, because the recorded values for the rock action are 100 or very close to this number,
whereas for the other two actions, they are zero or very close to it. However, when the
data from Table 2 are also taken into account, the threshold of 0.8 is the apparent winner,
because, for this threshold, a 100 percent confidence in the rock action is shown across all
the biased percentage values. The data in Table 2 indicate that percentage distributions
may be a better choice for representing AIPs than forming them based on the maximum
action counts from Table 1.

The gathered case study data also reveal some other interesting observations. One
such observation can be seen at 60 percent with the 0.9 rule confidence value threshold.



Mathematics 2023, 11, 1243 11 of 35

This is the first time that the measured action values in Table 1 begin appearing in the
mined rules above or equal to the 0.9 threshold, which, as a consequence, represents a flip
in the data from the previous E: 100 (all empty actions) to the one hundred maximum value
for the rock action. Another interesting observation in Table 2 is the immediate percentage
value rise between the values measured at 60 percent and 70 percent for the 0.1 threshold.
The rise is in the magnitude of 17.22 percent, and the previous percentage rises in the
0.1 column up to 60 percent are, on average, 2.72 percent (with a maximum percentage
difference of 6.08 percent). Table A1 also shows almost double the averages of the counted
actions per block between 60 and 70 percent for threshold 0.1.

To summarize, the case study experiment confirms our confidence in the method’s
ability to create viable AIPs reflecting the action bias input. It also demonstrates the
importance of the correct choice of the threshold value, and shows that the percentage
distributions inside the AIPs show the comprehensive action behavior of a player.

5. Experiment: Real-Time Strategy Simulation Environment

The purpose of the second experiment is to test the dcARM method in a higher
complexity game space, namely in RTS games. The complexity of their game spaces is
several orders of magnitude larger than that in most abstract games (e.g., board games
such as Backgammon or Chess) due to (but not limited to) the large pool of units available
and their possible actions at any given time [20]. RTS games are, therefore, known to be
one of the most challenging genres for game agents to play well [39].

In this section, the experimental settings are presented first, followed by a detailed
presentation of the DC’s and method’s time data gathered from execution.

5.1. Experimental Settings

The software and hardware experimental settings are the same as those in the case
study. microRTS [40] is also used to establish the RTS simulation environment needed for
the second experiment.

microRTS runs on its default configuration parameters, which are as follows: the
time slice available between the game frames for game agents to perform operations
(i.e., returning the actions they play with) is set to 100 milliseconds (i.e., the game agent is
running in a continuing mode, which does not allow any violation of timing checks of the
experimental settings of the game), the maximum playout time is set to 100 cycles (i.e., the
maximum time allowed for simulation) and the maximum depth of a game tree is set to 10
(used in game agents with a tree-based internal structure).

The dcARM method parameters are set as follows:

• There are, in total, six game actions in microRTS to be executed by the appropriate
units (all are used in the dcARM method): wait (0) (i.e., the unit takes no actions
in the current frame), move (1) (i.e., the unit should move to the other cell), harvest
(2) (i.e., the unit must gather resources), return (3) (i.e., the unit should return to
base with the resources), produce (4) (i.e., the unit must produce another unit) and
attack location (5) (i.e., the unit attacks the opponent’s unit at a specific location/cell).
Due to the low number of available actions in the microRTS environment, no action
abstractions are used (e.g., grouping actions based on specific criteria).

• The chosen features for this experiment, which are gathered from the microRTS game
state, are shown in Table 3 (the [fr/op] part symbolizes that two distinct features are
used: one for the friendly side and one for the opposing side).

• The interval of the following rule confidence thresholds θcv is used: [0.1, 1.0] (with a
step of 0.1).

• The maximum passed time for keeping records is set as unlimited (i.e., all rules from
the beginning of the game are included).

• The maximum passed time for keeping an AIP is set to unlimited (i.e., all AIPs from
the beginning of the game are included).

• The sampling rate is set to one (i.e., the dcARM method is utilized in each game frame).
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Table 3. All features used in the microRTS experiment.

Feature Acronym Feature Description

[fr/op]Worker The number of Worker units (on the map).
[fr/op]Light The number of Light units.

[fr/op]Heavy The number of Heavy units.
[fr/op]Ranged The number of Ranged units.

baseThreatFriendly
Are any of the friendly bases under threat (true/false)? The base

is under threat if there is an opponent unit present for two
physical game map squares in either direction of the base.

[fr/op]ResourcesLeft The number of resources left to spend.
[fr/op]Bases The number of Bases.

[fr/op]Barracks The number of Barracks.

Five game agents are selected from the set of agents for dcARM method testing. All the
agents come pre-included in the microRTS package and are used as-is. The chosen agents
represent groups of random, scripted and advanced game tree-based agents. Specifically,
RandomAI and RandomBiasedAI (two game agents utilizing baseline random behavior,
but with the second game agent being biased toward attack, harvest or return actions),
WorkerRush (basic scripted behavior, with the only goal being the construction of Worker
game units and rushing/attacking the opponent), UCT (Upper Confidence Bounds applied
to game tree) and NaiveMCTS (advanced behavior utilizing a game tree-based internal
structure). Note that, when the biased mechanisms in RandomBiasedAI are used, it
does not mean that the attack, harvest or return actions, if available, are always utilized
(i.e., selected by default). Instead, the implemented bias only lowers the probability of the
move action and does not disregard it entirely. The chosen agents always play a game in
pairs with a RandomAI agent. After the agent in testing returns a set of actions (note: the
100 milliseconds time slice is not violated), the game pauses for experimentation purposes
before iterating to the next frame [41]. Every agent plays ten games for each threshold from
the threshold interval.

During the experiment, time measurements are made and recorded for step three of
the dcARM method, which is due to the utilization of the nature-inspired DE algorithm,
the most complex method step, therefore consuming the highest amount of processing time
(i.e., other steps vary very slightly in time execution between frames, so all the focus is
directed toward the most time-expensive part of the method).

5.2. Real-Time Strategy Digital Characterization Data Results

Due to the RTS gameplay, game states can occur that come devoid of extracted actions.
The presentation of the RTS characterization analysis results also includes such game states.
In contrast, for the case study of the RPS game, the blocks empty of actions are omitted from
the tables to focus purely on the aspect of actions (i.e., the RPS game example is simple,
and it is not necessary to hinder the presentation of the results with any non-action-related
information). The RTS results hence show how representative each action is for the whole
game. Ultimately, in RTS games, there is a dependency between the chain of game states
established (i.e., every game state (except the first one) is a follow-up of the game state that
came before it). Therefore, even the game states that are empty of actions contribute to the
overall gameplay.

The results of the experiment for all the thresholds (from 0.1 to 1.0) and all the game
agents are presented in three graph segments. Each segment corresponds to one of the
segments of the AIP abstraction of information:

(a) Raw counts of extracted actions. The graphs in Figures 3–7 show the raw counts of the
extracted actions (i.e., the DC holds the actions averaged across all gameplay frames
and also those averaged for all ten games played) (ordinate axis) for each available
action (abscissa axis). The figures in Appendix B present a single value for each specific
action, because discussing the differences between agents can (sometimes) be more
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straightforward with just one value. Therefore, the graphs shown in Figures A1–A5
show the average value across all thresholds (ordinate axis) for each specific action
(abscissa axis). Note, however, that some thresholds with a (near) zero value can
substantially lower the overall value, making interpretations with only one value
more difficult due to less information.

(b) Percentage distributions of extracted actions. The graphs in Figures 8–12 show the
percentage distributions of the extracted actions (i.e., the DC holds the actions aver-
aged across all gameplay frames, and also those averaged for all ten games played)
(ordinate axis) for each available action (abscissa axis).

(c) Sum of maximum actions. The graphs shown in Figures 13–17 show the counts of
achieving the maximum action (i.e., the DC holds the maximum actions summed
across all the gameplay frames, and also those averaged for all ten games played)
(ordinate axis) for each available action (abscissa axis). Note: The graphs for the
maximum actions include two additional labels named “No action” and “The same”,
which stand for how many times no action is taken (i.e., if no action is taken, then
there is no maximum action), and how many times two or more actions reach the same
maximum action status (i.e., they havve the same maximum percentage distribution).
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Figure 3. Graph for a RandomAI game agent showing an averaged raw count of extracted actions.
The main feature observed in this graph is the preferred usage of wait (0) and move (1) actions, in
contrast to the usage of other actions.

5.3. Time Data Results

The time data recorded during the dcARM method execution of ARM in step three
is presented in this section. This analysis is performed to establish how much time is
needed while running the most demanding part of the method in a complex RTS game
environment. Such an analysis should present a narrative of how the time measurements
fit in the reactive control, tactical and strategic time intervals identified in the related work.

The graphs shown in Figures 18–22 show the time in milliseconds (ordinate axis)
required to execute ARM at a specific game frame (abscissa axis) for all the games (one
hundred in total), for all the thresholds (from 0.1 to 1.0) and for all the game agents.
Appendix C is also included to demonstrate (and to better illustrate) how the game-agent-
recorded ARM time data behave at a specific threshold. Appendix C contains the graphs
from Figures A6–A10 (for five game agents), which show the time in milliseconds (ordinate
axis) required to execute ARM at a specific game frame (abscissa axis) during the span of
ten games for a threshold of 0.5.



Mathematics 2023, 11, 1243 14 of 35

Mathematics 2023, 11, 1243 14 of 34 
 

 

 
Figure 4. Graph for a RandomBiasedAI game agent showing an average raw count of extracted 
actions. The key point is to recognize the similarity between this and the previous graph (Figure 3). 
They are similar because both game agents utilize the (core) random behavior. 

 
Figure 5. Graph for a WorkerRush game agent showing an average raw count of extracted actions. 
The main feature to notice is this agent’s almost complete lack of the use of the wait (0) action. This 
is a clear distinction in behavior regarding other game agents. 

 
Figure 6. Graph for a UCT game agent showing an average raw count of extracted actions. This 
agent has quite a balanced behavior. The candle sizes experience only a slight decline between dif-
ferent threshold values. 

0

10

20

30

0 1 2 3 4 5

RandomBiasedAI (an average raw count of 
extracted actions)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

5

10

15

20

0 1 2 3 4 5

WorkerRush (an average raw count of 
extracted actions)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

5

10

15

20

25

0 1 2 3 4 5

UCT (an average raw count of extracted 
actions)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 4. Graph for a RandomBiasedAI game agent showing an average raw count of extracted
actions. The key point is to recognize the similarity between this and the previous graph (Figure 3).
They are similar because both game agents utilize the (core) random behavior.
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Figure 5. Graph for a WorkerRush game agent showing an average raw count of extracted actions.
The main feature to notice is this agent’s almost complete lack of the use of the wait (0) action. This is
a clear distinction in behavior regarding other game agents.
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Figure 6. Graph for a UCT game agent showing an average raw count of extracted actions. This agent
has quite a balanced behavior. The candle sizes experience only a slight decline between different
threshold values.
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Figure 7. Graph for a NaiveMCTS game agent showing an average raw count of extracted actions.
An interesting observation of this graph is how closely it matches the graph of the WorkerRush agent
(Figure 5), with the only difference being the wait (0) action.



Mathematics 2023, 11, 1243 16 of 35

Mathematics 2023, 11, 1243 15 of 34 
 

 

 
Figure 7. Graph for a NaiveMCTS game agent showing an average raw count of extracted actions. 
An interesting observation of this graph is how closely it matches the graph of the WorkerRush 
agent (Figure 5), with the only difference being the wait (0) action. 

(b) Percentage distributions of extracted actions. The graphs in Figures 8–12 show the 
percentage distributions of the extracted actions (i.e., the DC holds the actions aver-
aged across all gameplay frames, and also those averaged for all ten games played) 
(ordinate axis) for each available action (abscissa axis). 

 
Figure 8. Graph for a RandomAI game agent showing the percentage distributions of extracted ac-
tions. Percentage distribution-wise, the wait (0) action revolves around the 30 percent mark and is 
only matched by the RandomBiasedAI agent (Figure 9). In contrast, other agents exhibit a much 
lower value (e.g., UCT and NaiveMCTS agents in the vicinity of 18 percent). 

0

5

10

15

20

0 1 2 3 4 5

NaiveMCTS (an average raw count of 
extracted actions)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
10
20
30
40
50
60
70

0 1 2 3 4 5

RandomAI (percentage distributions)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 8. Graph for a RandomAI game agent showing the percentage distributions of extracted
actions. Percentage distribution-wise, the wait (0) action revolves around the 30 percent mark and
is only matched by the RandomBiasedAI agent (Figure 9). In contrast, other agents exhibit a much
lower value (e.g., UCT and NaiveMCTS agents in the vicinity of 18 percent).
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Figure 9. Graph for a RandomBiasedAI game agent showing the percentage distributions of extracted
actions. These percentage distributions are similar to those of the RandomAI game agent (Figure 8).
The return (3) and attack location (5) actions are very low on this agent’s agenda.
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Figure 10. Graph for a WorkerRush game agent showing the percentage distributions of extracted
actions. The agent is scripted to rush the opponent with as much force as its resource budget allows.
The wait (0) action is, therefore, non-existent. The move (1) action is its preferred choice, and the
usage of the produce (4) action (required to produce rushing Worker units) can only be matched by
the NaiveMCTS game agent (Figure 12).
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Figure 11. Graph for a UCT game agent showing the percentage distributions of extracted actions.
The key point is how the UCT agent has a slightly lower representation of the return (3) action in
comparison to those of the WorkerRush (Figure 10) and NaiveMCTS (Figure 12) game agents and
almost half the representation of the produce (4) action compared to that of every other game agent
(except RandomAI (Figure 8)).
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Figure 12. Graph for a NaiveMCTS game agent showing the percentage distributions of extracted
actions. The agent utilizes the produce (4) action quite heavily (i.e., it is quite intensive for an
RTS game).
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Figure 13. Graph for a RandomAI game agent showing the maximum actions. The wait (0) and move
(1) actions stand out (i.e., can surpass the count of 1000).
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Figure 14. Graph for a RandomBiasedAI game agent showing the maximum actions. This graph is
similar to the RandomAI graph (Figure 13) (although with lower overall values).

Mathematics 2023, 11, 1243 19 of 34 
 

 

 
Figure 15. Graph for a WorkerRush game agent showing the maximum actions. The “No action” 
taken is the lowest among all game agents. 

 
Figure 16. Graph for a UCT game agent showing the maximum actions. The key point is that the 
return (3) and attack location (5) actions are virtually non-existent for this agent (the same as for the 
RandomBiasedAI (Figure 14)). 

0

50

100

150

200

250

300

No action The same 0 1 2 3 4 5

WorkerRush (maximum actions)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
50

100
150
200
250
300
350
400

No action The same 0 1 2 3 4 5

UCT (maximum actions)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 15. Graph for a WorkerRush game agent showing the maximum actions. The “No action”
taken is the lowest among all game agents.
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Figure 16. Graph for a UCT game agent showing the maximum actions. The key point is that the
return (3) and attack location (5) actions are virtually non-existent for this agent (the same as for the
RandomBiasedAI (Figure 14)).
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Figure 17. Graph for a NaiveMCTS game agent showing the maximum actions. This agent shares a
similar action candle distribution (except the wait (0) action) to that of the WorkerRush game agent
(Figure 15).
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Figure 18. Graph for a RandomAI game agent showing the time needed to execute ARM for all
games and thresholds. This game agent is the most time-consuming and plays the longest games.
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6. Discussion

This section is divided into four parts. First, the DC results of the five game agents
used in the experiment are discussed and summarized first. Second, the suitability of the
dcARM method is upheld for real-time game usage. Third, three possible directions for
future research are presented. Last, the possible drawbacks of the method are provided,
and suggestions are given for improvements.

6.1. DC Results of Five Game Agents

In the following list, a short discussion and summary of the DC results are provided
for every game agent used in the experiment.

(a) RandomAI/RandomBiasedAI: Pretext: Both agents share the same core (i.e., random
behavior), which is clearly shown on their graphs due to their similarity. Both agents
are also very keen on using the wait (0) and move (1) actions. Presentation of results:
The average raw count of the extracted wait (0) action for both agents shows values of
around 13 to 16, whereas those of UCT and NaiveMCTS are much lower at around
8 to 10. For the move (1) action, the count is similar between the agents but with
slightly lower values when compared to those of other agents (i.e., around 15, whereas
other agents are a few points above this). When the percentage graphs are observed,
the usage of the wait (0) action is maintained at around the 30 percent mark (with
those of UCT and NaiveMCTS being much lower, at around 18 percent). In the
maximum action graphs, the wait (0) and move (1) actions surpass a count of 1000
(even reaching 1500 in some cases) for the RandomAI agent, and the RandomBiasedAI
has them at around 500 to 600. Every other agent has a much lower value for the
maximum action count for these two actions (only that of UCT reaches the 300 mark
for the move (1) action). For the remainder of the actions, only the produce (4) action
is shown slightly in the graphs, and the return (3) and attack location (5) actions are
not used. Summary: The wait (0) action is used less by other agents, which signals
that they utilize much more intelligence- (i.e., actions with active purposes) driven
behavior than these two agents do. Even the usage of “No action taken” is, for these
two agents, up to three times higher than that for any other agent.

(b) WorkerRush: Pretext: This rushing agent expresses the most apparent result of a
clear-cut connection between the game agent’s DC and the agent’s actual modus
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operandi. The agent graphs show that the wait (0) action is not utilized, whereas
every other agent at least considers using it. Presentation of results: The averaged
raw count of the extracted move (1) action is on par with those of the other agents
(even slightly higher than those of the RandomAI and RandomBiasedAI). The harvest
(2) action count candles are mainly represented at around mark eight (slightly lower
than those of the UCT and NaiveMCTS agents). The return (3) action is stable at mark
five (somewhat higher than those for the UCT and NaiveMCTS agents). The produce
(4) action is on par with that of the UCT agent (for some candles, it is even higher)
at around mark eight but is lower than that of the NaiveMCTS agent. The attack
location (5) action is very similar to those of the other agents. When the percentage
graphs are observed, the move (1) action is the most represented action among all
agents (and the graphs regarding this action are also similar), but the candles for the
WorkerRush and UCT agents are around ten percent higher. The harvest (2) action is
twice as high for the WorkerRush, UCT and NaiveMCTS agents compared those of
the RandomAI and RandomBiasedAI agents. The produce (4) action for this agent is
similar to that of NaiveMCTS at around twenty percent. This is the highest compared
to the other agents, which are mainly found in the twelve to fourteen percent range.
The attack location (5) action does not deviate considerably compared to those of the
other agents. Regarding the maximum action graphs, the “No action taken” candles
are the lowest among all the agents. The candles for other actions are similar to
those of the NaiveMCTS agent. The maximum actions for the return (3) and attack
location (5) actions show slightly higher behavior for this agent (i.e., in comparison to
other agents, whose candles are almost non-existent). Summary: Because the primary
operation of the WorkerRush agent is rushing the opponent, its DC clearly shows that
the agent has no use for waiting. The agent’s harvesting behavior is twice as high as
those of the random-based agents and is similar to those of the other two competent
agents, signaling intelligent/scripted (i.e., non-random) behavior. The same can be
stated for the utilization of returning actions (i.e., it is distinct from random behavior).
Production is very high on this agent’s agenda, which is to be expected, because the
agent’s primary purpose is to rush the opponent with as many units as possible.

(c) UCT: Pretext: The UCT agent is quite a capable agent, and its behavior lies somewhere
along the lines of NaiveMCTS but with more balanced behavior (e.g., the candle
sizes do not show as much of a decline between the different thresholds in the
averaged raw action count when compared to those of WorkerRush or NaiveMCTS).
Presentation of results: For this agent, the presentation is kept short because most of
the results are already discussed in the actions of the previous agents. To summarize,
the averaged raw action counts and percentage distributions for the wait (0) action are
similar to those of the NaiveMCTS agent (i.e., in the vicinity of mark eight for a raw
count and around 18 percent for percentage distributions), and the maximum actions
count is almost half in comparison to that of the same agent. For the move (1) and
harvest (2) actions, the graphs show similar behavior to those of the WorkerRush
and NaiveMCTS agents. The return (3) action is slightly less well represented than
those of WorkerRush and NaiveMCTS (e.g., the percentage distributions are below
ten percent, whereas these two agents have them firmly on ten percent). The produce
(4) action is almost half (e.g., in terms of percentage distributions) compared to those
of other agents, and is on par with RandomAI. The attack location (5) action numbers
are similar to those of the NaiveMCTS agent. Summary: This agent is balanced
across actions and is not too keen on production. Its actions are similar to those of
NaiveMCTS but with slightly lower action counts.

(d) NaiveMCTS: Pretext: It is interesting to observe how this agent’s DC comes close to
the DC of the WorkerRush agent (except for the wait (0) action, which is almost non-
existent in WorkerRush). This behavior could be attributed to both agents utilizing
aggressive tactics against the opponent. Presentation of results: The NaiveMCTS
action results are already presented when describing other agents. This agent utilizes
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the production (4) action quite heavily (i.e., a twenty percent distribution of choosing
this output is quite intensive for an RTS game). Summary: This agent drives a very
offensive-oriented game, which is quite evident when compared to the DC of the
WorkerRush agent (also offensive-oriented). The data results present a comprehensive
picture across specific actions and reveal the DC similarity patterns (e.g., similar
offensive behaviors for NaiveMCTS and WorkerRush), as well as crucial differences
(e.g., low values of wait (0) actions for non-random agents) between the agents. Such
patterns are an excellent indicator of the DC being a helpful tool when researching
explainable agents (e.g., agents that do not allow access to the internal code—black
box concept), when trying to compare the agents with each other (e.g., possible
classification of agents) or when the characterization is needed for (but not limited to)
gameplay purposes (e.g., opponent modeling). The results also show the importance
of different abstractions of the action data. For example, if only the maximum action
usages are observed, it would seem as though the agents never use the return (3) and
attack location (5) actions. However, when the averaged raw count of extracted actions
and percentage distributions are taken into consideration, one can observe that they
are indeed used (even up to ten percent with WorkerRush).

6.2. Suitability of dcARM Method for In-Game Usage

In related work, the following time intervals are found for each of the three primary
RTS hierarchy abstraction levels responsible for issuing commands to units: a one-second
interval for reactive control (unit micromanagement), an interval ranging from thirty to
sixty seconds for tactical operations and an interval of approximately three or more minutes
for the strategical level. These levels offer the basis for establishing the suitability of the
dcARM method’s most time-expensive part (i.e., step three) for in-game usage. A reminder
of the experiment’s settings is as follows: the method’s use for this experiment is at an
intensive peak due to keeping the recorded data of all previous frames and with all frames
sampled (i.e., the sampling rate is set to one).

The graphs shown in Figures 18–22 reveal the following:

• Strategic level: This method can be used for strategic purposes, because, even with
the highest time consumption of RandomAI, there is only one occurrence in which
time consumption extends beyond the two-minute mark. RandomAI and Random-
BiasedAI are otherwise the most time-consuming agents due to playing the longest
games (i.e., measured by the overall frame count). For the other agents, the highest
time consumptions are at around eighty seconds (RandomBiasedAI), nine seconds
(WorkerRush), fifteen seconds (UCT) and eleven seconds (NaiveMCTS).

• Tactical operations: Regarding the timings of tactical operations, the usage of this
method is also possible for every non-random agent (i.e., their measured time values
are a lot lower than the sixty-second limit) and for the random agents (i.e., the method
could be used to approximate the inclusion of up to a thousand frames).

• Micromanagement purposes: Some time restrictions must apply when building the
DC for micromanagement purposes. For example, if non-random agents are observed,
the one-second mark is passed at approximately fifty frames. Moreover, if the first
fifty frames of the games are followed, the time increases almost linearly. However,
later on, the time data grow in a non-linear way, and therefore the number of frames
used for micromanagement should be lower. For example, in later stages of the UCT
agent games, the graph in Figure A9 can easily increase by two seconds in fifty frames.

6.3. Possible Directions for Future dcARM Research

This subsection presents three possible directions for further DC research.

6.3.1. Automated Game Policy Creations

Nuances, or harder-to-spot differences in action abstraction values, can occur in the
data. Such nuances can hold vital information regarding what kind of plan the game agent
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is pursuing. For example, the DC data for the WorkerRush and NaiveMCTS agents are very
similar for some actions (e.g., the percentage distributions for production were similar) but
completely different in other regards (e.g., the action related to waiting is not utilized in
WorkerRush, whereas NaiveMCTS uses it at around eighteen percent, when the non-zero
threshold candles are observed). Therefore, different actions can be grouped (possibly
automatically) to form the (strategic) game policy (or the game-specific aspect the agent
is pursuing). Multiple game policies (e.g., for different aspects of the RTS game, such as
production or combat) can also serve as descriptions of the game agent. They can also be
incorporated into the DC as higher-level descriptions.

For policy creation, we envision a method that creates the action-based game policy
automatically (i.e., selecting and combining actions to form a policy while considering the
AIP’s action abstraction levels). Automatic machine learning (known as autoML [42]) can
be utilized first to create a selection of game-policy-specific features (feature engineering
can be utilized to lower the complexity of dcARM usage). Second, the responding DC can
be constructed, and last, the game policy (or multiple policies) can be created, consisting
of actions that are above some (pre-set) thresholds for AIP’s action abstraction values.
However, because such research is out of the scope of the current paper, we leave it for
future research.

6.3.2. Usage of DC for Future Simulation Purposes

When executing the steps from 2 to 5 in the dcARM method, a new AIP data point is
created on the game frame (time) interval. This point covers the interval frame sequence
from the previous point up to this point. By analyzing the differences in AIPs between the
points, changes in player behavior can be detected (e.g., changes in the opponent model).
Differences between the AIPs should also allow for determining what game policies the
player uses during specific time intervals (i.e., not only the game policies for the whole
game, but possible (sub)game policies for specific (sub)time intervals).

By following the changes in the opponent’s action behavior across time and the usage
of (sub)policies, it may be possible to make predictions regarding how the opponent be-
haves in the future, or to test (e.g., by simulating computer-controlled players in advance)
whether the actions of another player can alter the behavior (i.e., influence the DC) of
the player under observation. Such predictions open up a variety of options for future
simulation purposes. For example, a simulation can be made with specific actions exe-
cuted against the opponent to determine whether the opponent’s DC adjusts accordingly,
revealing their weak spots. On the other hand, if the player’s DC does not change, this may
signal that the player is perhaps scripted (non-adaptive). In addition, by focusing on action
simulations (i.e., only a few actions of the action set are selected based on the chosen DC
action value criteria), benefits in lowering simulation complexities can be achieved due to
not using randomness across the set of all actions.

6.3.3. DC as the Driver of a Game Agent’s Decision Process

One of the future research viabilities for DC may lie in it being a contributing factor
to the game agent’s decision process, whereas other techniques, components and algo-
rithms require additional confirmation as to whether the chosen actions are suitable for
the opponent at play. For example, if the decision process has multiple scenarios created
(e.g., of equal probability to be selected) on how to approach the gameplay in the near
future, and if it knows that the DC of the player is very offensive, it would likely be wiser
to use a counter-offensive scenario than to go with the unit-research scenario and, in the
process, losing the game. The opponent’s action behavior (i.e., with patterns of AIPs) across
different game time points provided in real-time can also act as feedback on how well or
poorly the scenario is being acted out.
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6.4. Drawbacks of the Method and Room for Improvement

However, there are some drawbacks of this approach and possible improvements to
be made to the dcARM method, which must be addressed in the future.

• DC offers many different abstractions of data, which, when combined with multiple
threshold possibilities, a sampling rate and a large set of actions, creates many possible
DC variations (patterns). Such patterns hold subtle clues, which are sometimes only
revealed when observed under the right action abstraction, or when there is knowledge
of exactly what is being searched for (e.g., if the agent is frequently moving, this can
be an essential clue when researching micromanagement). DC patterns can also
capture the character abstraction from the macro picture (e.g., an agent is keen on
production), but more refinement to the method is needed to capture the micro picture
(i.e., hard-to-spot nuances). For example, one can quickly identify when the agent
is keen on a specific action. However, minor differences (e.g., of one percent) in
action usage can mean a different utilization of such action. For example, two agents
exhibit similar patterns for some behaviors, as NaiveMCTS and WorkerRush agents
do for production, but otherwise have entirely different background implementations,
tactics and strategies. Such nuances are observed very nicely in the RPS case study,
where even a ten percent bias toward a specific action is captured with definitive
conclusions. However, RTS environments are very complex, and in-depth research on
the capability of DCs is needed in the future to obtain even more definitive answers
(or better resolution) regarding the (in-depth) agents’ behavior.

• Automatic feature engineering [14] is focused on in step 1 of the dcARM method.
Therefore, only the features that represent the game agent correctly and contribute
significantly to the relevant DC construction (i.e., the DC of the game agent is of high
confidence due to the usage of quality features) should be automatically selected.
This would be a substantial improvement because the dcARM method would be
completely automated. To achieve this goal, the utilization of deep learning simulation
environments [43] and deep learning methods [44] is on our research agenda.

• In the current work, the game is paused during the frames to allow for the uninter-
rupted execution of the dcARM method, and to gather all the data needed for different
types of analyses. For example, lessons learned with time analysis can help enhance
the method to be time-adjustable in the future, allowing it to be incorporated into the
game agent’s lifecycle. In this way, part of the game agent’s time slice can be allocated
to the method, helping the agent’s decision making through DC data utilization into
better capabilities with which actions to play.

• Data-squashing methods [45] can be used on the dcARM method input feature
datasets, which can reduce the time needed to execute the dcARM method.

Although this subsection focuses on the drawbacks of the method, we finish with
an advantage of DC. With access to game engine APIs (i.e., application programming
interfaces), one can always determine the set of available actions. If access to such a
set is not possible, the available set of actions can be determined by playing the game.
Therefore, the main aspect required for creating a DC is (almost always) available from the
start, opening the doors for the dcARM method’s usage across many game environments
(i.e., usage possibilities are opened up for non-RTS games as well).

7. Conclusions

In this article, the practicality of using DC is shown across the initial RPS case study
experiment as well as with a more complex experiment positioned in the RTS game envi-
ronment. The results of the initial case study confirm our expectation that even a slight
bias toward specific actions would be clearly shown in the data. The complex experiment
positioned in the RTS game environment further reveals that having a set of different action
abstractions within the AIPs can be imperative when searching for specific nuances of
player behaviors.



Mathematics 2023, 11, 1243 28 of 35

The data interpretation of the five game agents confirms that such nuances are present.
It is demonstrated that random-based agents show a lack of active, purpose-driven behavior,
highlighted by their frequent use of waiting and the “No action taken” option, whose usage
is up to three times higher than that of any other agent. WorkerRush’s complete absence of
waiting behavior is in line with its scripted rushing agenda. Its production behavior is very
high, which is also in line with the purpose of rushing the opponent with as many units
as possible. The harvesting and returning nuances are similar to more advanced agents.
For the UCT agent, the data show balanced behavior across all actions without prioritizing
production. NaiveMCTS prioritizes production and drives a very offensive-oriented game.

Another example of how DC interpretations can be helpful is by observing changes
in action percentages across time, which can reveal the tactics and strategies of a player.
Moreover, having maximum action information can be turned into an advantage, because,
if one knows that a player is overusing some specific action, there are multiple ways to
utilize such behavior to our own benefit. Thus, by using different action abstractions, game
behavior patterns can be created, game policies that the player is applying can be revealed,
or the DCs can be used for future simulation purposes (as outlined in Section 6.3). In future
work, such research directions will be explored further, with each direction’s automatic (or
intelligent) element being one of the top priorities.

To conclude, game spaces are continually increasing in complexity. One merely must
remember the look of arcade games from the nineteen-seventies and -eighties and compare
them to the newest game engines with almost photorealistic graphics to see that it is evident
that the trend in complexity will only continue. Therefore, the need to know how (unknown)
game (engine) components operate is high (i.e., gaining deeper insight into the operation
of “black boxes”). Through creating component abstractions, patterns, models and now
DCs with the help of powerful optimization-based tools, the field of explainable AI can,
hopefully, be advanced, improvements to (or an increased understanding regarding) the
gameplay can be made, and the path to a new era of video games can be set (e.g., metaverse
games [46]).
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Appendix A

Table A1. Averages (across all blocks) of the counted actions per block.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0% 32.58/34.53/36.01 33.96/35.09/33.16 34.74/34.28/35.19 31.54/30.68/32.05 23.75/25.47/24.47 20.95/21.57/21.06 7.2/6.1/6.61 0/0/0 0/0/0 0/0/0
10% 36.98/32.7/32.35 37.83/34/33.66 36.41/32.65/32.38 36.64/30.57/27.74 32.15/23.49/23.75 25.02/18.53/18.26 19.14/6.01/6.51 8.12/0/0 0/0/0 0/0/0
20% 38.76/31.7/33.04 39.42/32.68/32.54 38.81/32.76/33.06 37.89/30.97/27.98 34.28/24.14/21.19 25.98/17.23/15.95 19.28/6.2/6.06 8.44/0/0 0/0/0 0/0/0
30% 48.34/30.94/31.36 49.4/30.16/31.45 50.39/30.19/31.13 49.37/27.98/26.8 50.26/18.21/19 47.26/15.15/14.62 30.91/5.41/5.32 17.25/0/0 0/0/0 0/0/0
40% 50.24/29.02/31.56 50.63/29.87/29.65 51.19/29.59/28.83 50.97/21.66/20.35 50.98/18.64/17.86 47.32/14.76/14.52 37.22/4.97/5.09 16.38/0/0 0/0/0 0/0/0
50% 53.42/28.87/30.12 54.01/31.49/28.3 49.86/25.69/27.43 53.29/18.94/21.49 52.59/18.77/17.56 53.31/13.79/14.56 40.52/4.82/4.95 30.67/0/0 0/0/0 0/0/0
60% 53.86/30.01/27.66 52.52/27.99/28.88 54.63/23.96/25.51 54.77/19.21/19.09 50.73/16.87/16.77 53.11/13.33/12.84 46.51/4.11/4.27 34.29/0/0 17.13/0/0 0/0/0
70% 106.94/28.34/27.69 107.9/27.48/28.65 108.31/24.48/24.35 106.37/16.53/18.69 106.28/15.93/16.27 104.49/12.63/12.56 104.7/1.93/1.98 87.57/0/0 53.25/0/0 0/0/0
80% 106.43/27.84/29.1 107.84/29.22/28.05 107.32/18.44/17.93 105.22/15.42/16.53 105.39/15.36/15.83 106.94/12.84/13.51 106.48/0/0 94.65/0/0 65.53/0/0 0/0/0
90% 131.04/28.18/28.13 136.65/24.62/23.79 137.01/19.01/16.97 135.25/15.79/17.21 134.03/15.22/16.06 133.65/4.09/4.11 138.37/0/0 127.01/0/0 90.38/0/0 0/0/0
100% 164.75/0/0 165.34/0/0 164.55/0/0 165.13/0/0 163.65/0/0 166.71/0/0 165.39/0/0 165.06/0/0 146.01/0/0 88.1/0/0
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Figure A1. Graph for a RandomAI agent showing the averages of all threshold values for the raw
count of extracted actions. The three most used actions average-wise are wait (0), move (1) and
produce (4).
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Figure A2. Graph for a RandomBiasedAI agent showing the averages of all threshold values for the
raw count of extracted actions. The three most used actions average-wise are wait (0), move (1) and
produce (4).
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Figure A3. Graph for a WorkerRush agent showing the averages of all threshold values for the raw
count of extracted actions. The three most used actions average-wise are move (1), produce (4) and
harvest (2).
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Figure A4. Graph for a UCT agent showing the averages of all threshold values for the raw count of
extracted actions. The three most used actions average-wise are move (1), harvest (2) and wait (0).
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