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ABSTRACT Statistical reasoning was one of the earliest methods to draw insights from data. However, over
the last three decades, association rule mining and online analytical processing have gained massive ground
in practice and theory. Logically, both association rule mining and online analytical processing have some
common objectives, but they have been introduced with their own set of mathematical formalizations and
have developed their specific terminologies. Therefore, it is difficult to reuse results from one domain in
another. Furthermore, it is not easy to unlock the potential of statistical results in their application scenarios.
The target of this paper is to bridge the artificial gaps between association rule mining, online analytical
processing and statistical reasoning. We first provide an elaboration of the semantic correspondences
between their foundations, i.e., itemset apparatus, relational algebra and probability theory. Subsequently,
we propose a novel framework for the unification of association rule mining, online analytical processing and
statistical reasoning. Additionally, an instance of the proposed framework is developed by implementing a
sample decision support tool. The tool is compared with a state-of-the-art decision support tool and evaluated
by a series of experiments using two real data sets and one synthetic data set. The results of the tool validate
the framework for the unified usage of association rule mining, online analytical processing, and statistical
reasoning. The tool clarifies in how far the operations of association rule mining and online analytical
processing can complement each other in understanding data, data visualization and decision making.

INDEX TERMS Association rule mining, data mining, online analytical processing, statistical reasoning.

I. INTRODUCTION
Decision support techniques play an essential role in today’s
business environment. Since the 17th century, statistical
reasoning (SR) has been used extensively to shape business
decisions [1] and it was the earliest method to draw insights
from data. With the emergence of decision support sys-
tems (DSSs) in the 1970s [2], SR is frequently used in DSSs
and decision support tools, just take SPSS (Statistical Pack-
age for the Social Sciences) [3] or SAS (Statistical Analysis
System) [4] as examples. With the rise of information tech-
nology in the 1990s, online analytical processing (OLAP) [5]
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and association rule mining (ARM) [6] have emerged as
powerful decision support techniques (DSTs) [7], both with
their specific rationales, objectives, and attitudes. Over the
years, both OLAP and ARM have gained massive ground in
practice (Cognos, SAP-BW resp. RapidMiner, Orange – to
name a few) and, similarly, massive attention in the research
community. Unfortunately, both OLAP and ARM have been
introduced together with their own genuine mathematical for-
malizations and developed their specific terminologies. This
makes it hard to reuse results from one domain in another;
in particular, it is not always easy to unlock the potential of
statistical results in OLAP and ARM application scenarios.
OLAP represents relational data [8] in multi-dimensional
views using roll-ups, drill-downs, slices, dices, etc.
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FIGURE 1. Semantic correspondences between association rule mining, online analytical processing and
statistical reasoning.

In contrast, ARM relies on the notion of itemsets and frequent
itemsets [9] in transaction databases. The correspondences
between OLAP and ARM might seem rather simple, but it is
neither fully elaborated in the state of the art nor implemented
in practice. Because of the strong involvement of SR, OLAP,
and ARM in decision-making, this paper aims to bridge the
artificial gaps between them. We contribute by elaborating
the semantic correspondences between the foundations of SR,
OLAP, and ARM, i.e., probability theory, relational algebra,
and the itemset apparatus.

In Fig. 1, a graphical representation of the process of deter-
mining the semantic correspondence between the SR, OLAP,
and ARM is shown. The solid rectangles are used to indicate
the selected DSTs, and the blue dashed lines rectangles are
used to indicate the foundations of DSTs. The adoption of
concepts in between OLAP and ARM (and vice versa) is
referred to as automatic OLAP [10] and multi-dimensional
ARM [11], respectively. In Table 1 and Table 2, we provide
a list of abbreviations and frequently used symbols that are
being used throughout the paper.

In the process of establishing semantic correspondences
between the three DSTs, probability theory and, in particular,
conditional expected values (CEVs) are at the center of our
considerations. CEVs correspond to sliced average aggre-
gates in OLAP and would correspond to potential ratio-scale
confidences in a generalized ARM [12]. Based on the seman-
tic correspondences between the DSTs, we are convinced that
it is possible to design advantageous next-generation features

of advanced decision support tools. A series of popular deci-
sion support tools is given in Fig. 2. We use software polls by
KDnuggets [13] in the years 2017, 2018, and 2019 tomeasure
the popularity of these tools. The popularity percentages of
the tools demonstrate that a diverse range of tools is popular
in practice and that they have also gained massive attention
in the research community.

Kamber et al. [11] addressed the integration of OLAP and
ARM as soon as 1997. They have provided the notion
of metarule-guided mining, which entails utilizing user-
defined rule templates to direct the mining process. Later,
Han et al. [14] have proposed DBMiner for interactive min-
ing, which provides a wide range of data mining operations
such as association, generalization, characterization, classifi-
cation, and prediction. We also identify several approaches
for integrating different DSTs, and there is significant
research specifically on the integration of OLAP and ARM
in state-of-the-art. We appraise all of these decision sup-
port frameworks and different ways of integrating DSTs;
however, the concept of semantic correspondences between
DSTs is yet to be elaborated in state-of-the-art. A detailed
discussion on a variety of decision support frameworks and
various approaches for the integration of DSTs is given in
Sect. II. Elaborating the semantic correspondences between
DSTs will be helpful to fill the artificial gaps between DSTs.
Furthermore, it can enable decision-makers to work with
cross-platform decision support tools and check their results
from different viewpoints.
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FIGURE 2. A series of popular decision support tools, together with their polarities according to opinion polls by KDnuggets [13] in 2017, 2018,
and 2019.

TABLE 1. Abbreviations and acronyms.

The research on elaborating semantic correspondences
between the three DSTs is significant due to the following
reasons:

1) DSTs are developed independently for intended user
groups and intended use cases.

2) Specific terminologies and functions of DSTs create
artificial gaps between them and their tools.

TABLE 2. List of frequent symbols.

3) Interpretation of results from one DST domain to
another is not easily possible.

4) Artificial gaps between DSTs force decision-makers to
use a variety of DSTs and decision support tools.

5) Various approaches for integrating DSTs are discussed
in state of the art; however, correspondences between
DSTs are obfuscated.

We observed that elaborating semantic correspondence
between DSTs is necessary to bridge various artificial gaps
between them. Therefore, in this paper, we elaborate semantic
correspondences between the foundations of SR, OLAP, and
ARM, i.e., between probability theory, relational algebra, and
the itemset apparatus. In particular, we formally establish the
correspondence between (i) the support of an itemset and
the probability of a corresponding event and (ii) the confi-
dence of an association rule and the conditional probability
of two corresponding events. And (iii), the OLAP average
aggregate function turns out to correspond to conditional
expected values, which closes the loop betweenARM,OLAP,
and probability theory with respect to the most important
constructs in ARM and OLAP.
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Based on the semantic correspondences between the DSTs,
we propose a novel framework for the unification of DSTs.
The framework provides a way to develop various next-
generation decision support tools. To validate the proposed
framework, we implement a sample tool by combining the
operations of three DSTs. The tool’s outcomes establish
semantic correspondence between SR, OLAP, and ARM and
provide various useful data visualization methods. The tool
is implemented on ASP.NET. In the tool, we use ‘all combi-
nations of influencing factors’ (ACIF) function to select the
target column and influencing factors to generate all possible
combinations of data items. The programming code and other
instructions on how to use the proposed tool are available in
the GitHub repository [15]. We have named the tool grand
report [12], [16]; a grand report provides a complete print-
out of generalized association rules, which can also be seen
as the entire unfolding of a pivot table [17]. An instance
of the tool is hosted and available on the web.1 The tool
is straightforward to use, and it provides unified usages of
DSTs.

The key contributions of the paper are as follows:
1) Elaboration of semantic correspondences between the

three DSTs, i.e., SR, OLAP, ARM, and their founda-
tions, i.e., probability theory, relational algebra, and the
itemset apparatus, respectively.

2) We characterize to what extent and how far SR, OLAP,
and ARM can be considered synonymous.

3) A novel framework for the unification of DSTs is
presented to develop next-generation decision support
tools.

4) A sample tool is presented to implement the unification
of DSTs. The tool provides unified usages of DSTs.

5) The tool is tested on various datasets and compared to a
state-of-the-art decision support tool. The comparison
and the tool’s outcome demonstrate the tool’s superior
performance.

The paper is organized as follows: In Sect. II, we review
current work related to the unification of SR, OLAP, and
ARM. Then, in Sect. III, we discuss the main concepts of
mainstream SR, OLAP, and ARM. In Sect. IV, we elaborate
semantic correspondences between the foundations of SR,
OLAP, and ARM, i.e., probability theory, relational algebra,
and the itemset apparatus. Subsequently, in Sect. V, we pro-
vide the framework for the unification of SR, OLAP, and
ARM. A description of its implementation and experiments
to showcase the relevance of the proposed framework are
given. Finally, a discussion on future work and a conclusion
are provided in Sect. VI and Sect. VII, respectively.

II. EXISTING WORK
In this section, previous work related to semantic correspon-
dences between DSTs and various approaches for the integra-
tion of DSTs is explored.

1http://grandreport.me

The classical DSSs [2] were developed to assist managerial
decisions by presenting several combinations of information.
With the emergence of OLAP [5], knowledge discovery in
databases (KDD) [36] and ARM [6], [37], many authors have
proposed a variety of advanced DSSs. In the 1990s, web-
based DSSs have been very popular [38]. Later, organizations
have started taking advantage of different DSTs in DSSs [19].
We examine eighteen different research articles that discuss
the integration of DSSs with different DSTs. A summary
of these articles is given in Table 3. Wang [18] presented a
novel architecture to integrate KDD techniques into existing
DSSs. The authors have discussed the integration of different
KDD techniques in group DSSs via three different types of
decision support agents. In 2002, Fan et al. [19] provided a
simple classification scheme for data value conflicts and pre-
sented an approach for discovering data conversion rules from
data automatically. Bolloju et al. [20] provided a method for
combining decision support and knowledge management to
present an integrative framework for developing enterprise
decision support environments. They used model mart and
model warehouse as repositories.

In 2007, Rupnik et al. [24] discussed a method for com-
bining DSS and data mining methods. The authors devel-
oped a data mining decision support system (DMDSS) that
incorporates classification, clustering, and association rules.
To investigate the use of data mining technology in DSS,
Charest et al. [28] presented a theoretical, conceptual, and
technological framework for the development of an intelli-
gent data mining assistant by employing case-based reason-
ing and formal DL-ontology paradigms. Zhuang et al. [29]
proposed a novel methodology to integrate data mining and
case-based reasoning to develop a pathology test ordering
system. In this paper, data mining concepts were used to
extract the knowledge from past data, and then it was used
in decision support.

In 2010, Liu et al. [30] conducted a survey to determine the
efforts being made to develop an integrated decision support
system (IDSS). IDSS combines four DSTs: knowledge-based
systems, data mining, intelligent agents, and web technology.
IDSS assists users in interpreting decision alternatives, and it
also discovers hidden interesting patterns in large amounts of
data using data mining tools. Gandhi et al. [39] demonstrated
a DSS architecture (DSSA) that combines various data min-
ing techniques. In this architecture, data mining tools were
used to identify a set of features and patterns that domain
experts can use to make decisions.

The majority of these works are inclined towards develop-
ing newDSSs and integrating DSSs with DSTs. However, the
concept of semantic correspondences between DSTs is not
discussed in any of these works. Therefore, we also explore
the state of the art for the integration of OLAP and ARM.
Some of these works focus on intra-dimensional associa-
tion rules, while others are concerned with inter-dimensional
association rules. Almost all intra-dimensional approaches
use repeated predicates from a single data dimension.
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TABLE 3. Existing approaches for the integration of different decision support techniques in DSSs.

A summary of different OLAP and ARM integration
approaches is given in Table 4.

In 1998, Ng et al. [41], and Zhu [10] have proposed
different ways to integrate ARM and OLAP together; how-
ever, their research was centered towards multi-dimensional
ARM, automatic OLAP, and other specific sets of prob-
lems. The mainstream ARM was developed to find fre-
quent items, while OLAP represented a multi-dimensional
view of data using different OLAP operations. Therefore,
the popularity of ARM for transactional datasets and the
progress of OLAP [44] in a multi-dimensional environment
attracted many authors to propose possible ways to inte-
grate the ARM and OLAP. In 1997, Kamber et al. [11] first
addressed the relationship between ARM and OLAP and
proposed a meta-rule-guided mining approach for mining
association rules from a multi-dimensional data cube. In this

paper, Kamber et al. [11] have presented four algorithms that
explore an OLAP data cube for meta-rule-guided mining
of multi-dimensional association rules. Imielinski et al. [40]
have presented cubegrades, a generalization of association
rules which display how a set of measures (aggregates) is
affected by specializing (rolldown), generalizing (roll-up)
and mutating (which is a change in the cube’s dimensions).
In this paper, cubegrades are shown as more expressive than
association rules in capturing associations and trends.

To support the adhoc mining in association rules,
Lakshmanan et al. [42] proposed an idea of constrained fre-
quent set queries (CFQs) and extended the architecture
proposed by Ng et al. [41]. In addition, they introduced a
new notion of quasi-succinctness and developed a heuristic
technique for non-quasi-succinct constraints. Ng et al. [41]
proposed architecture for exploratory mining of association
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TABLE 4. Integration of OLAP and ARM in data mining.

rules that is constraint-based and human-centered. To push
the constraints deep inside the mining process, this paper
presents a new algorithm (CAP) and two new rule prun-
ing properties; antimonocity and succinctness. To generalize
ARM within arbitrary n-ary relations and boolean tensors,
Nguyen et al. [43] proposed exclusive confidence and natural
confidence measures. They have also designed a complete,
scalable algorithm that computes the exclusive measures.
Kamber et al. [11] extended the constrained gradient analy-
sis ‘‘cubegrades’’ presented by Imielinski et al. [40]. In this
paper, the authors have addressed various issues and methods
on efficient mining of multi-dimensional, constrained gradi-
ents in multi-dimensional data cubes. They have also defined
the constraints as significant constraints, probe constraints,
and gradient constraints.

Zhu [10] proposed online analytical mining of association
rules and presented a step-by-step method and algorithm for
inter-dimensional ARM, intra-dimensional ARM, and hybrid
ARM. Based on OLAP technologies, they also designed a
method to perform multi-level ARM. Chen et al. [45] devel-
oped an OLAP and data warehousing-based platform for
weblog records (WLRs), which supports multi-level and
multi-dimensional ARM. Finally, Cerf et al. [46] have pre-
sented an n-array algorithm for n-array relations, which was
used to extract constrained-based closed n-sets.

In the state of the art, integration of DSTs and DSSs frame-
works are broadly discussed. However, the correspondences
between the foundation of DSTs are obfuscated. Therefore,
we aim to elaborate semantic correspondences between the
foundations of the three popular DSTs and bridge the artifi-
cial gaps between them.

III. PRELIMINARIES
This section provides background information about the three
popular DSTs, i.e., SR, OLAP, ARM and their foundation,
i.e., probability theory, relational algebra, and itemset min-
ing. In Sect. III-A, we discuss the concepts of SR. Then,
in Sect. III-B, the concepts of classical ARM are discussed,
and in Sect. III-C, we discuss the basic concepts of OLAP.

A. STATISTICAL REASONING (SR)
With the development of probability theory [1] by thinkers
like Gerolamo Cardano, Blaise Pascal, and Pierre de Fermat,
statistics has evolved as an essential framework for develop-
ing DSS [47] and DSTs; therefore, most of the DSTs have
been developed with the core concepts of SR. Since 1970,
extensive use of computer systems has made it possible to
do large statistical computations that have not been possible
manually. In the 19th and 20th centuries, statistics had its
victory by evolving into the primary scientific tool – think
about classical thermodynamics and its elaboration through
statistical mechanics and quantum physics. In the natural
sciences, statistics have become the necessary foundation
in economics, and many Nobel prizes correspond with the
probabilistic variants of game theory. So, it could be said that
statistics is the language of science. However, even more,
statistics was a crucial driver in the industrial revolution,
by helping to optimize production, think about Student’s
t-distribution.

Moreover, statistics is at the core of optimizing production;
think of Six Sigma alone. All this is true, but since 1970,
we have seen the next wave of SR. Statistics has left the sci-
entific laboratories and entered the everyday decision-making

VOLUME 10, 2022 12797



R. Sharma et al.: Novel Framework for Unification of Association Rule Mining, OLAP and SR

TABLE 5. Types of input data used in various decision support techniques.

processes in our organizations. Here, SR is the tool of highly
specialized experts in highly specialized tasks but becomes
available to a broader range of decision-makers. This move-
ment is precisely about what has been expressed by ‘‘The
Future of Data Analysis’’ by Tukey [48]. It means that sys-
tematic decision-making becomes more and more pervasive.
In our opinion, this also explains the emergence of ARM
and OLAP, which are two immensely successful approaches
that complement, extend (but also overlap) the established SR
toolkit. Moreover, the journey has just begun, as the current
interest in data science proves – in 2015, Donoho [49] showed
the evolution of data science from statistics. In Table 5,
we provide different combinations of data used in SR, OLAP,
and ARM. R is used to represent numerical type data, D is
used to represent discrete type data and B is used to represent
bitmap data.

B. ASSOCIATION RULE MINING (ARM)
To understand the relationship between different data items
in transactional datasets and to find out interesting patterns
and correlations, Agrawal et al. [6] presented the central con-
cept of ARM using binary representations of data items
as shown in Table 5. However, ARM is also presented for
numerical data items as quantitative ARM [50], numerical
ARM [51], [52].

ARM is highly effective in discovering relations and
interesting associations among data items using different
measures of interestingness [6], [53] and it is a prevalent
technique that plays a crucial role in market basket data
analysis, bioinformatics, ocean, land, and medical diagnosis.

In the original settings, association rules are extracted from
transactional datasets composed of a set I = {i1, . . . , in} of
n binary attributes called items and a set D = {t1, . . . , tn},
tk ⊆ I , of transactions called database. An association rule
is a pair of itemsets (X ,Y ), often denoted by an implication
of the form X ⇒ Y , where X is called the antecedent
(or premise) and Y is called the consequent (or conclusion),
X ∩ Y = ∅. To select interesting association rules, the
following are the most popular measures of interestingness
in ARM.

Definition 1: The Support of an itemset X with respect to
a set of transactions T , denoted by Supp(X ), is the ratio of
transactions that contain all items of X (number of transac-
tions that satisfy X ) [54]:

Supp(X ) =
|{t ∈ T | X ⊆ t}|

|T |

Definition 2: The confidence of an association rule
X ⇒ Y concerning a set of transaction T , denoted by
Conf (X ⇒ Y ) is the percentage of transactions that con-
tains X which also includes Y . Technically, the confidence
of an AR is an estimation of the conditional probability
of Y over X :

Conf (X ⇒ Y ) =
Supp(X ∪ Y )
Supp(X )

.

Definition 3: The lift of an association rule X ⇒ Y ,
denoted by Lift(X ⇒ Y ), is used to measure misleading
rules that satisfy minimum support and minimum confidence
threshold. The Lift measure is also used to calculate the devi-
ation between an antecedent X and a consequent Y , which is
the ratio of the joint probability of X and Y divided by the
product of their marginal probabilities.

Lift(X ⇒ Y ) =
Supp(X ∪ Y )

Supp(X )× Supp(Y )

In ARM, when the number of association rules is too large
to be presented to a data mining expert or even treated by
a computer, measures of interestingness can filter the inter-
esting association rules. After support, confidence, and lift,
more than fifty different measures of interestingness are in the
literature [53], [55], [56]. These measures of interestingness
are discussed in detail in the literature [57], [58]. Initially,
ARM was limited to large transactional datasets. Still, later,
Han et al., Lu et al., Imielinski et al., and Nguyen et al.
[40], [43], [59], [60] presented different views on multi-level
and multi-dimensional ARM. Over the years, different ARM
frameworks [34] and the use of ARM in varied application
scenarios [61], [62] have also been discussed in the state of
the art [63].
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1) MULTIDIMENSIONAL VIEW OF ARM
More recently, ARM has been adapted to the multidimen-
sional case [43] and multitask-based ARM [64]. In multi-
dimensional setting of ARM, datasets are composed of a
set D = {S1, . . . , Sn} of dimensions, and an n-ary relation
between them, i.e. they are formally tuples (S1, . . . , Sn,R)
with R ⊆ S1 × · · · × Sn. In ‘‘Multitask-based’’ ARM,
highly frequent association rules for different ARM tasks are
referred as ‘‘single-task’’ rules which are Later combined
together to generate the global results, i.e, ‘‘multitask rules’’.

Multidimensional association rules are rules between two
so-called associations that generalize the notion of itemset.
They are defined as the Cartesian products of subsets of
dimensions. The set of dimensions used in an association
X is called its domain and is noted dom(X ). For example,
X = {Milk,Bread} × {Winter} is an association on the
domain dom(X ) = {products, seasons}. We use πSi (X ) to
denote the projection of the association X on the dimension
Si, e.g. πproducts(X ) = {Milk, Bread} and πseasons(X ) =
{Winter}.

In the multi-dimensional case, the generalization of the
notion of support is the relative support. The support of an
association X relative to a set D ⊇ dom(X ) of dimensions is
defined as

SuppD(X ) =
∣∣∣{t ∈∏

Sd∈D\{D}
Sd | ∃u ∈

∏
Si∈D\dom(X )

Si such that

∀x ∈ X , x.u.t ∈ R}
∣∣∣ (1)

Using the relative support, two variants of confidence, the
exclusive confidence and natural confidence are defined for
multidimensional association rules:

Confnatural(X ⇒ Y ) =
Suppdom(X∪Y )(X ∪ Y )
Suppdom(X∪Y )(X )

Confexclusive(X ⇒ Y ) =
Suppdom(X∪Y )(X ∪ Y )× P

Suppdom(X )(X )

with P = |
∏

Si∈dom(X∪Y )\dom(X ) πSi (Y )|.
In Table 6, the multidimensional association rule
{Milk} ⇒ {Bread} × {Spring} has a natural support of 1

4
because

Supp{products,seasons}({Milk,Bread} × {Spring}) = |{c2}| = 1

Supp{products,seasons}({Milk}) = |{c1, c2, c3, c4}| = 4. (2)

This rule can also be expressed in first-order logic, i.e.

{Milk} ⇒ {Bread} × {Spring} ≡ ∀X ,Y ,¬purchase

(X ,Milk,Y ) ∨ (purchase(X ,Bread, Spring)

∧purchase(X ,Milk, Spring)). (3)

C. ONLINE ANALYTICAL PROCESSING (OLAP)
Historically, OLAP is not a new idea; it has persisted
over the decades. Initially, in 1962, Kenneth Iverson pro-
posed the foundation of OLAP in his book ‘‘A Program-
ming Language’’ [65]. In 1975, Information Resources Inc.

FIGURE 3. A sample OLAP data cube with three dimensions (D1: location,
D2: product and D3: time).

launched the first OLAP product named ‘‘Express’’, which
was acquired by Oracle Inc. in 1995. In 1993, Edgar F. Codd
used the term OLAP and set up 12 policies for an OLAP
product in his paper ‘‘Providing OLAP (Online Analytical
Processing) to user-analysts: An IT mandate’’ [5]. In OLAP,
it is essential to have a multi-dimensional cube. There-
fore, we show a sample OLAP cube with three dimensions
(D1,D2,D3) in Fig. 3. Practically, an OLAP cube consists
four types of functions; First, OLAP operations, i.e., RollUp,
Drill Down, Slice, Dice, and Pivot. Second is aggregation
operations, i.e., SUM, AVG, COUNT, MIN, MAX, calcu-
late trends, ranking, percentiles, attribute-based grouping,
compare aggregates, etc. The third is the OLAP operator,
i.e., ‘‘Force’’ and ‘‘Extract,’’ which convert a dimension into
a measure and a measure into a dimension. Fourth is the
capability to handle uncertain data within the OLAP model.

IV. SEMANTIC CORRESPONDENCE BETWEEN
SR, OLAP AND ARM
In this section, we establish semantic correspondence
between SR, OLAP, and ARM. We use probability theory
with conditional expected values (CEVs) as the center of
our mappings. First, we provide semantic correspondence
between SR, i.e., probability theory and ARM, and then we
provide semantic correspondence between SR and OLAP.
Definition 4 (σ -Algebra): Given a set �, a σ -Algebra 6

over � is a set of subsets of �, i.e., 6 ⊆ P(�), such that the
following conditions hold true:

1) � ∈ 6
2) If A ∈ 6 then �\A ∈ 6
3) For all countable subsets of 6, i.e., A0,A1,A2 . . . ∈ 6

it holds true that ∪
i∈N0

Ai ∈ 6

Definition 5 (Probability Space): A probability space
(�,6,P) consists of a set of outcomes �, σ algebra of
(random) events 6 over the set of outcomes � and a prob-
ability function P: 6 → R, also called probability measure,
such that the following axioms hold true:
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TABLE 6. A multidimensional binary dataset in which customers (c1 to c4) buy products (Milk, Bread, Diapers, Beer) during seasons (Winter, Spring,
Summer).

1) ∀A ∈ 6.0 ≤ P(A) ≤ 1 (i.e., P: 6→ [0, 1])
2) P(�) = 1
3) (Countable Additivity): For all countable sets of pair-

wise disjoint events, i.e., A0,A1,A2 . . . ∈ 6 with Ai∩Aj=∅
for all i 6= j, it holds true that

P
(∞⋃
i=0

Ai
)
=

∞∑
i=0

P(Ai)

Definition 6 (Conditional Probability): Given two events
{X ,Y } ∈ 6 of probability space (�,6,P). If P(X ) 6= 0 then
we define conditional probability of Y given X as:

P(Y |X ) =
P(X ∩ Y )

P(X )

Definition 7 (Expected Value): Given a real-valued dis-
crete random variable X : �→ I with indicator set I =
{i0, i1, i2, . . . , in} ⊆ R based on (�,6,P), the expected
value E(X ), or expectation of X (where E can also be denoted
as EP in so-called explicit notation) is defined as follows:

E(X ) =
∞∑
n=0

in · P(X = in)

Definition 8 (Conditional Expected Value): Given a real-
valued discrete random variable Y : � → I with indicator
set I = {i0, i1, i2, . . .} ⊆ R based on a probability space
(�,6,P) and an event X ∈ 6, the expected value E(Y ) of
Y conditional on X (where E can also be denoted as EP in
so-called explicit notation) is defined as follows:

E(Y |X ) =
∞∑
n=0

in · P(Y = in| X ) (4)

A. ANCHORING ASSOCIATION RULE MINING IN
PROBABILITY THEORY
We follow the concepts and notation and their formaliza-
tion as originally introduced by Agrawal et al. in their
1993 paper [6] as closely as possible. First, there is a whole
itemset I = {I1, I2, . . . , In} consisting of a total number n
of items I1, I2, . . . , In. A subset X ⊆ I of the whole itemset
is called an itemset. Next, we introduce the notion of a set of
transactions T (that fits the itemset I) as a relation as follows:

T ⊆ TID× {0, 1} × · · · × {0, 1}︸ ︷︷ ︸
n−times

(5)

Here, TID is a finite set of transaction identifiers. For the
sake of convenience, we assume that it has the form TID =
{1, . . . ,N }. Actually, we need to impose a uniqueness con-
straint on TID, i.e., we require that T is right-unique, i.e.,
a function given as,

T ∈ TID −→ {0, 1} × · · · × {0, 1}︸ ︷︷ ︸
n−times

(6)

Given (6), we have that N in TID = {1, . . . ,N } equals
the size of T , i.e., N = |T |. Henceforth, we refer to T inter-
changeably both as a relation and as a function, according
to (5) resp. (6). For example, we use t = 〈i, i1, . . . in〉 to
denote an arbitrary transaction t ∈ T ; similarly, we use T (i)
to denote the i-th transaction of T more explicitly etc. Given
this formalization of the transaction set T , it is correct to say
that T is a binary relation between TID and the whole itemset.
In that, I1, I2, . . . , In need to be thought of as column labels,
i.e., there is exactly one bitmap column for each of the n
items in I, compare with (5) and (6). Similarly, Agrawal et al.
have called the single transaction a bit vector and introduced
the notation t[k] for selecting the value of the transaction
t in the k-th column of the bitmap table (in counting the
columns of the bitmap table, the TID column is omitted, as it
merely serves the purpose of providing transaction identi-
ties), i.e., given a transaction 〈tid, i1, . . . in〉 ∈ T , we define
〈tid, i1, . . . in〉[k] = ik . Less explicit, with the help of the
usual tuple projection notation πj, we can define t[k] =
πk+1(t). Let us call a pair 〈I,T 〉 of a whole itemset I and a set
of transaction T that fits I as described above an ARM frame.
Henceforth, we assume an ARM frame 〈I,T 〉 as given.

We have said that a transaction is a bit vector. For the sake
of convenience, let us introduce some notation that allows us
to treat a transaction as an itemset. Given a transaction t ∈ T
we denote the set of all items that occur in t as {t} and we
define it as follows:

{t} = {Ik ∈ I | t[k] = 1} (7)

The {t} notation provided by (7) will prove helpful later,
as it allows us to express properties about transactionswithout
the need to use bit-vector notation, i.e., without the need to
maintain item numbers k of items Ik .
Given an Ij ∈ I and a transaction t ∈ T , Agrawal et al.

says [6] that Ij is bought by t if and only if t[j] = 1. Similarly,
we can say that t contains Ij in such case. Next, given an
itemset X ⊆ I and a transaction t ∈ T , Agrawal et al. says
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that t satisfies X if and only if t[j] = 1 for all Ij ∈ X . Similarly,
we can say that t contains all of the items of X in such case.
Next, we can see that t satisfies X if and only if X ⊆ {t}.
Henceforth, we use X ⊆ {t} to denote that t satisfies X .
Given an itemset X ⊆ I, the relative number of all transac-

tions that satisfy X is called the support of X and is denoted
as Supp(X ), i.e., we define:

Supp(X ) =
|{t ∈ T | X ⊆ {t}}|

|T |
(8)

Again, it makes perfect sense to talk about the support of
an itemset X as the relative number of all transactions that
each contain all of the items of X .
An ordered pair of itemsets X ⊆ I and Y ⊆ I is called an

association rule, and is denoted by X ⇒ Y . Now, the relative
number of all transactions that satisfy Y among all of those
transactions that satisfy X is called the confidence of X ⇒ Y ,
and is denoted as Conf(X ⇒ Y ), i.e., we define:

Conf(X ⇒ Y ) =
|{ t ∈ T | Y ⊆{t} ∧ X⊆{t} }|

|{t ∈ T | X ⊆ {t}}|
(9)

Usually, the confidence of an association rule is introduced
via support of itemsets as follows:

Conf(X ⇒ Y ) =
Supp(X ∪ Y )
Supp(X )

(10)

It can easily be checked that (9) and (10) are equivalent.

B. SEMANTIC CORRESPONDENCE BETWEEN
ARM AND SR)
Next, we map the concepts defined in ARM to probability
theory. Given an ARM frame F = 〈I,T 〉 next we map the
concepts defined in ARM to probability space (�F , 6F ,PF ).
First, we define the set of outcomes �F to be the set of
transactions T . Next, we define6F to be the power set of�F .
Finally, given an event X ∈ 6F , we define the probability of
X as the relative size of X , as follows:

�F = T (11)
6F = P(T ) (12)

PF (X ) =
|X |
|T |

(13)

In the sequel, we drop the indices from �F , 6F , and
PF , i.e., we simply use �, 6, and P to denote them, but
always keep in mind that we actually provide correspon-
dence from ARM frames F to corresponding probability
spaces (�F , 6F ,PF ). The idea is simple. Each transaction
is modeled as an outcome and, as usual, also a basic event.
Furthermore, each set of transactions is an event.

We step forward with item and itemsets. For each item
I ∈ I we introduce the event that item I is contained in a
transaction, and we denote that event as [[I ]]. Next, for each
itemset X ⊆ I, we introduce the event that all of the items
in X are contained in a transaction and we denote that event
as [[X ]]. We define:

[[I ]] = { t | I ∈ {t} } (14)

[[X ]] = ∩
I∈X

[[I ]] (15)

As usual, we identify an event [[I ]] with the characteristic
random variable [[I ]] : � −→ {0, 1} and use P([[I ]]) and
P([[I ]]=1) as interchangeable.

1) FORMAL CORRESPONDENCE OF ARM SUPPORT AND
CONFIDENCE TO PROBABILITY THEORY
Based on the correspondence provided by (11) through (15),
we can see how ARM Support and Confidence translate into
probability theory.
Lemma 1 (Mapping ARM Support to Probability Theory):

Given an itemset X ⊆ I, we have that:

Supp(X ) = P([[X ]]) (16)

Proof: According to (15), we have that P([[X ]]) equals

P( ∩
I∈X

[[I ]]) (17)

Due to (14), we have that (17) equals

P
(
∩
I∈X
{ t ∈ T | I ∈ {t} }

)
(18)

We have that (18) equals

P({ t ∈ T | ∧
I∈X

I ∈ {t} }) (19)

We have that (19) equals

P({t ∈ T | X ⊆ {t}}) (20)

According to (13), we have that (20) equals

|{t ∈ T | X ⊆ {t}}|
|T |

(21)

According to (8), we have that (21) equals Supp(X )
Lemma 2 (Mapping ARM Confidence to Probability The-

ory): Given an itemset X ⊆ I, we have that:

Conf(X⇒Y ) = P
(
[[Y ]]

∣∣ [[X ]] )
Proof: Omitted.

In Table 7, we provide one to one mapping in between the
operations of ARM and SR, i.e., probability theory. A set of
items in ARM I = {I1, I2, . . . , Im} are equivalent to the set
of events I = {I1 ⊆ �, . . . , Im ⊆ �} in probability theory.
Transactions T in ARM are equivalent to the set of outcomes
� in probability space (�,6,P). Support of an itemset X in
ARM is equivalent to the relative probability of the itemset X .
Confidence of an association rule X⇒Y is equivalent to the
conditional probability of Y in the presence of X .

C. ANCHORING OLAP IN PROBABILITY THEORY
Decision-makers are using OLAP to explore data in a multi-
dimensional view. It helps to compute different aggregate
summaries using various OLAP operations (COUNT, SUM,
Drill-Down, Roll-up, Slice, Dice, etc.). For example, Fig. 4
demonstrates age and salary records in a two-dimensional
space. In OLAP, data exploration starts from a high gran-
ularity level to a lower granularity level or vice versa. The
sample data cube is given in Fig. 3 consists of time, location
and product dimensions. An OLAP dimension comprises
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TABLE 7. Semantic correspondences between association rule mining and statistical reasoning (probability theory).

organized attributes in a hierarchical structure to show the
different data granularity levels. For example, the time dimen-
sion in Fig. 3 may have the following hierarchy: Month →
Quarter → Year . Here, the dimension attribute Year shows
a high level of granularity, andMonth shows a lower level of
granularity. Based on the sample OLAP cube given in Fig. 3,
first, we provide standard notions and definitions and then
provide semantic correspondence between OLAP and SR,
i.e., probability theory.

1) OLAP CUBE: BASIC NOTATIONS AND DEFINITIONS
Let an OLAP cube C be a multi-dimensional data cube with
four-tuple C = {1,D,H ,M} where1 represents the OLAP
cube domain, D is a non-empty set of n dimensions, H is
a set of dimension hierarchy and M is a non-empty set of
quantitative measures, i.e., numerical or additive values of a
cell. We have considered the following properties concerning
the OLAP cube.
• In an OLAP cube C , dimension set D = {D1,D2 . . .

Di . . .Dn}, dimension Di consists of a set of different
hierarchy levels Hi, where i ≤ n.

• Ahierarchy levelH i
j ∈ Hi is a non-empty set ofmembers

Aij. H i
j(j ≥ 0) is the jth hierarchical level in Di. E.g.,

in Fig. 3, the set of hierarchical level of dimension D1 is
H1 = {H1

0,H
1
1,H

1
2} = {Location,Continent,Country},

and in the dimension D1, the set of members at level H1
2

is A12 = {India,USA,Estonia,Finland}
Definition 9: Sub Cube: A sub cube C ′ is part of the main

OLAP cube with a non-empty set D′ of m dimensions. D′ =
{D1,D2 . . .Di . . .Dm} and m ≤ n. According to D′, a tuple
{21 . . . 2m} is a sub cube C ′ if D′ ⊆ D and 21 ⊆ Aij for all
i ∈ {1 . . .m} and 2i 6= null.

E.g., If in Fig. 3, a dimension set D′ = {D1,D2} ∈ D is
a sub cube then (21,22) = {Europe, x1, x2} will be a sub
cube.
Definition 10: AggregateMeasure: AMeasureM in a data

cube C is the SUM of measureM of all facts in the cube.
E.g., ‘‘Total Sales’’ in Fig. 3 can be evaluated by its

sum-based aggregate measure. The aggregate expression

FIGURE 4. A sample representation of age and salary records in two
dimensional space.

TotalSales(India, {x1, x2, y1}) represents the SUM of total
sales turnover for the products (x1, x2, y1) in India.
Definition 11: Intra Dimension Predicate: A dimension

predicate Ai in a dimension Di is its member as a value
represented as ai ∈ Aij .
E.g., In Fig. 3, a dimension predicate a1 in dimensionD1 is

a1 ∈ {Asia,America,Europe}.
Definition 12: Inter Dimension Predicate: Let data cube

C have a sub cube C’ with a non empty set of dimensions
D′ = {D1,D2 . . .Di . . .Dm} and D′ ⊆ D. When the value
of dimension predicates {A1 . . .Am} belongs to two or more
dimensions where (2 ≤ m ≤ n), then it is referred to as inter
dimension predicates.

E.g., In Fig. 3, dimension predicate {a1, a2} ∈ {D1,D2}

then a1 ∈ {Asia,America,Europe} and a2 ∈ {X ,Y ,Z }.

2) SEMANTIC CORRESPONDENCE BETWEEN OLAP AND SR
As discussed in Sect. III-C, an OLAP cube consists of various
operations (Roll-Up, Drill-Down, Slice, Dice, Pivot, SUM,
AVG, MIN, etc.). We have that the OLAP conditional opera-
tions (Slice, Dice, Drill- Down, Roll-up) on bitmap (Binary)
columns correspond to conditional probabilities. Those con-
ditional operations on numerical columns correspond to con-
ditional expected values in probability theory. For example,
we model a sample OLAP Table 8 in probability theory.
We consider that Table 8 is equivalent to the set of outcomes.
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TABLE 8. A sample OLAP table.

� in probability space (�,6,P), a row r is an element of
�, i.e. r ∈ � and each column c is equivalent to a random
variable R. We consider numerical columns as finite real-
valued random variables (For Example: Salary ∈ � ⊆ R)
and bitmap columns are considered as events (For Example:
Freelancer ⊆ �). The following is a probabilistic interpreta-
tion of the OLAP Table 8.

• City: � −→ {Boston, L.A., New York. . . . . . .}
• Profession: � −→ {Chef, Construction. . . ..}
• Education Level: � −→ {High School. . . ..}
• Age Group: � −→ {18–20, 25–30. . .>65}
• Freelancer: � −→ {0, 1}
• Salary: � −→ ISalary ⊆ R(|ISalary| ∈ N)

3) SEMANTIC CORRESPONDENCE BETWEEN
OLAP AVERAGES AND SR
In many cases and as per Codd et al. [5], decision-makers
use SQL queries to interact with OLAP. Therefore, we start
with simple OLAP queries mapped with probability the-
ory. We have a simple OLAP average query; (SELECT
AVG(Salary) FROM Table 8). If the number of rows of
Table 8 is represented by |�| and the number of rows that
contain a value i in column C are equivalent to #C (i) then
AVG(Salary) FROM Table 8 will compute the average of all
the salaries, i.e., a fraction of the sum of the column (Salary)
and the total number of rows in the table.

In probability theory, the average of a random variable X is
the Expected Value of X = E[X ]. We compare the expected
value of X , i.e., E(X ) with the output of the AVG query in
OLAP. We have OLAP Query:

(SELECT AVG(Salary) FROM Table 8) (22)

Expected Value: E(Salary) =
∑

i∈ISalary

i · P(Salary = i) (23)

=

∑
i∈ISalary

i ·
#Salary(i)
|�|

=

∑
r∈�

Salary(r)

|�|
(24)

As per (23) and (24), the average of a random variable X
in probability theory and simple averages of an OLAP query
provide the same outcome. Hence, we say that an average
query in OLAP corresponds to expected values in probability
theory.

4) SEMANTIC CORRESPONDENCE BETWEEN OLAP
CONDITIONAL AVERAGES AND SR
The conditional average queries in OLAP calculate averages
of a column with a WHERE clause. For example, we have
an average SQL query with some conditions where the target
column is numerical and conditional variables have arbitrary
values. We have OLAP Query:

SELECT AVG (Salary) FROM Table 8

WHERE City = Seattle AND Profession = IT ; (25)

In probability theory, we compute the conditional average
of a random number using its conditional expectation. For
example, as per Def. 8, the conditional expectation of a
random number Y with condition X is given as:

E(Y |X ) =
∞∑
n=0

in · P(Y = in| X )

f (i) = E(Y = in|X ) (26)

Here, the value E(Y = in|X ) is dependent on the value of i.
Therefore, we say that E(Y = in|X ) is a function of i, which
is given in (26). We compare the conditional expected value
of E(Y = in|X ) with the output of the conditional AVG query
in OLAP. We have OLAP Query:

SELECT AVG (Salary) FROM Table 8

WHERE City = Seattle AND Profession = IT ;

Conditional Expected Value: E(Salary|City
= Seattle ∩ Profession= IT) (27)

E(Y |X ) =
∑
i∈IC

i · P(Y= i | X) (28)

As per (27) and (28), the average of a random variable Y
with condition X (Conditional Expected values) and the con-
ditional average of an OLAP query provide the same out-
come. Hence, we can say that a conditional average query
in OLAP corresponds to the conditional expected values in
probability theory. In Fig. 5, we demonstrate the seman-
tic correspondence between the features of SR, OLAP, and
ARM. At the top level, we consider OLAP and its features.
In the middle, we have probability theory and its features,
which work as the middle layer between OLAP, ARM and
at the bottom layer, we provide ARM and its measures.
In OLAP, we have conditional averages over binary columns,
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FIGURE 5. Demonstration of semantic correspondence between statistical reasoning, OLAP and association rule mining.

TABLE 9. Semantic correspondence between statistical reasoning, OLAP and association rule mining.

FIGURE 6. A high level abstraction of the framework for the unification of decision support techniques.

conditional averages over numerical columns, and differ-
ent other conditional aggregates like Max, Min, Sum, etc.
In OLAP, conditional averages on binary columns correspond

to conditional probability, and they also correspond to confi-
dence in ARM. However, conditional averages on numerical
columns in OLAP correspond to conditional expected values
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FIGURE 7. A detailed overview of the framework for the unification of decision support techniques.

in probability theory. Based on these semantic correspon-
dences between SR, OLAP, and ARM, we are convinced that
DSTs have common features with different names. However,
they are being used differently. Therefore, the unification of
SR, OLAP, and ARM will provide an advanced novel frame-
work for next-generation decision support tools. In Table 9,
we provide a list of semantic correspondence between the
features of SR, OLAP, and ARM.

V. THE FRAMEWORK, EVALUATION AND EXPERIMENTS
In this section, the framework for the unification of three
DSTs is presented. As a data science process provided by
Schutt andO’Neil [66], the proposed framework ismodular in
design and every module in the framework can be displaced.
In Fig. 6, we illustrate the high-level abstraction of the frame-
work and based on the process of knowledge discovery in
databases (KDD) [36], a detailed overview of the proposed
framework is given in Fig. 7.
The framework consists mainly of seven major compo-

nents. The Graphical User Interface (GUI) allows decision-
makers to communicate with the framework to process the
raw data. The data pre-processing includes various operations
and checks, including discretization, cleaning, e.g., checking
for corrupt data, reviewing the types of data, transforming
and integrating data in useful formats, etc. The ACIF gen-
erator in the framework is developed for decision-makers to
select the target columns and influencing factors to generate
different combinations of data items. The decision support
engine is a set of multiple DSTs, allowing decision-makers
to select one or more techniques to process the data and get
insights. The Pattern evaluation is used to find interesting
information using different methods from SR, OLAP, and
ARM. The semantic mapper is a manual process to map the
results of DSTs and reports different semantic correspon-
dences between them. A brief description of all the significant
components of the proposed framework is given in Table 10.

A. IMPLEMENTATION OF THE PROPOSED FRAMEWORK
To demonstrate the usability of the proposed framework,
an instance of the framework is developed using ASP.NET,
an open-source framework for developing web applications.

The resulting tool is an example of a next-generation decision
support tool implemented by adopting the proposed frame-
work. A summary of technologies and framework used for
the implementation of the tool is given in Table 11. The
programming code and other instructions on how to use the
proposed tool are available in the GitHub repository [15].
The AJAX request methods are used throughout the tool’s
implementation to establish a connection between the client
and server. JSON serialization and deserialization functions
convert .NET objects (strings) to JSON format and JSON for-
mat to .NET objects. We use Oracle database and Microsoft
Excel as databases and for OLAP, we have used relational
algebra in the tool.

The tool first recognizes different kinds of data
(discretized, numerical, categorical) and then develops gen-
eralized association rules for the various combinations of
influencing factors and target columns. In the tool, if the
selected target column is numerical, then the aggregate func-
tion is used, and the average value of the target column
is calculated against the chosen influencing factors by the
following SQL query; Select AVG (target column) from table
group by influencing factors. If the specified target column is
numerical, the aggregate function is employed in the tool, and
the average value of the target column is determined against
the chosen influencing factors using the SQL statement;
Select AVG (target column) from table group by influencing
factors. If the selected column is categorical, the tool uses the
following SQL query to determine the conditional probability
of the target column; Select conditional probability of target
column under influencing factor from table group by target
column and influencing factors. Both support and lift are
calculated for numerical and categorical target columns. For
the numerical target column, the order of columns is support,
lift, an average value of the target column, and then influenc-
ing factors. For the categorical target column, the columns
are listed in the following order: support, lift, conditional
probability, target column, and influencing variables.

1) ACIF GENERATOR
In the tool, we have developed a function for ACIF gen-
erator and implemented it in the proposed framework.
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TABLE 10. Summary of the components used to develop the framework
for the unification of DSTs.

TABLE 11. Summary of the technologies and framework used for the
implementation of the tool.

The ACIF generator is developed to select the target column
and influencing factors to generate all possible combinations
of the selected target column and influencing factors. First,
the generator identifies the column combinations from the
dataset and generates reports for the target column and influ-
encing factors. The pseudo-code for the ACIF generator and
ACIF report generator is given in Listing 1. In the pseudo-
code, the CREATE_COMBINATIONS function is defined
to pass the information of influencing columns and the
number of columns. This function calculates the possible
combinations of the selected influencing factors. In line 15,
the GENERATE_REPORT function is defined to generate
the reports for various combinations of influencing factors
against target columns. This function passes the informa-
tion about the table name, target columns and influencing
columns. In this function, the SQL statement is used to
retrieve the support, lift, conditional averages and influencing
factors from the data source.

2) MATHEMATICAL DESCRIPTION OF THE ACIF GENERATOR
Let T be a database Table with multiple columns C = {X1 :
T1, . . . ,Xn: Tn}, where X1 . . .Xn represent column names
and T1 . . . Tn represent column types. To calculate various

operations of SR, OLAP and ARM for T ,

∀1 ≤ ψ ≤ n

∀D = {X ′1: D1, . . . ,X ′ψ−1: Dψ−1} ⊆

C(Di = d1, . . . , dni)

∀d ′1 ∈ D1, . . . , d ′ψ−1 ∈ Dψ−1

Here, D is the subset of C and the influencing factor.

∀Y : R ∈ C or Y = Xij: B,Xi: di ∈ C

Y is the target column, R is the real-valued numbers then.
Support:

P(Y ,X ′1=d1, . . . ,X
′

ψ−1=dψ−1) (29)

Average:

E(Y | X ′1=d1, . . . ,X
′

ψ−1=dψ−1) (30)

Lift:

E(Y | X ′1=d1, . . . ,X
′

ψ−1=dψ−1)

E(Y )
(31)

B. EXPERIMENTS ON THE PROPOSED FRAMEWORK
The experiment section demonstrates the potential of the
introduced framework. The tool is evaluated on two real
datasets and one synthetic dataset. The tool is tested on a com-
puter with an Intel(R) Core(TM) i5-8265U CPU@ 1.60GHz,
1800 Mhz, 4 Core(s), 8 Logical Processor(s), 16 GB RAM
and Windows 10 x 64 operating system. The programming
code, datasets, and other necessary instructions about the tool
are available in the GitHub repository [15].

The datasets are summarized in Table 12, in which
we highlight the number of records, number of attributes,
and number of numeric attributes. The first Dataset, New
Jersey (NJ) School Teacher Salaries (2016) [67] contains
138, 715 records and 15 attributes, while another real
dataset, DC public government employees [68] contains
33, 424 records, which are huge in numbers to check the
performance of the tool. In the table, we have described the
dataset attributeswith their types. Dataset NJ Teacher Salaries
(2016) consists of salary, job, and experience data for the
teachers and employees in New Jersey schools. The data are
sourced from the (NJ) Department of Education. The second
real dataset is a list of DC public government employees and
their salaries in 2011. The second data set is sourced from
the washington times via freedom of information act (FOIA)
requests. We have also tested the proposed tool on the sam-
ple dataset UDS1 [69]. This dataset contains 1, 470 records
with different combinations of numerical, categorical, and
discretized attributes. A feature list obtained by parsing the
UDS1 dataset is summarized in Table 13.
In the datasets, the target column is the one for which

we are computing ARM operations, i.e., support, confi-
dence, lift and OLAP averages with respect to an influenc-
ing factor. An influencing factor is an attribute that impacts
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FIGURE 8. A sample report comparing the results of OLAP and ARM measures is as follows: the ARM operations (support, confidence, lift)
and OLAP operations (averages) are displayed. A sample dataset is used to generate the report, which includes all possible combinations
of influencing factors and numerical target columns.

Listing 1 Pseudo-Code to Find the ACIF and Generate ACIF Reports

1: function CREATE_COMBINATIONS(influencing_Columns[], numberofColumns)
2: if numberofColumns == \text{0}~then
3: return []
4: return_Values = []
5: for i = \text{1}~to LENGTH(influencing_Columns) do
6: colName = influencingColumns[i]
7: partialLst = REMOVE_COLUMN(i,influencingColumns)
8: for each: j in CREATE_COMBINATIONS(partialLst, numberofColumns - 1) do
9: APPEND_TO(return_Values,ADD_FIRST(colName,j))
10: end for
11: end for
12: return return_Values
13: end function
14:
16: function GENERATE_REPORT(table_Name, target_Column, influencing_Columns[])
16: for i = \text{1}~to LENGTH(influencing_Columns) do
17: column_Combination = call:CREATE_COMBINATIONS(influencingColumns,i)
18: for each: Combinations in column_Combination
19: "SELECT COUNT(*)/ (SELECT COUNT(*) FROM "+table_Name+") AS SUPPORT, (SELECT AVG("+target_Column+") FROM "+table_Name+")/
AVG("+target_Column+") AS LIFT,
AVG("+target_Column+") AS AVG_targetColumn, "+ Combinations +"
FROM "+table_Name +"
GROUP BY "+ Combinations +"
ORDER BY "+ Combinations;"
20: end for
21: end for
22: end function

the target columns. Therefore, we also denote the WHERE
clause as an influencing factor for the target column in OLAP
computations. The UDS1 dataset consists four columns with

different data types; age is discretized, gender is categorical,
education is categorical and DailyRate is numerical. The
column Age has the age groups as 20 − 30, 30 − 40, etc.,
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TABLE 12. Summary of datasets used to evaluate performance of the proposed tool.

TABLE 13. A summary of different attributes obtained by parsing the
datasets.

FIGURE 9. Running time and performance variation of the proposed tool
induced by the number of records in the datasets.

and gender has two categorical values; Male and female.
Education has five categorical levels A, B, C, D, and E.
For example, if we select education as the target column
and its values are A, B, C, D, and E. Here, education is
a factor and its values are instances of the factor. The tool
calculates the conditional probability for each instance in the
generated report. For example, suppose we select DailyRate
as the target column and age, gender and education as influ-
encing factors. In this case, all possible combinations of the
target column are generated against all selected influencing
factors.

At the first step, the tool checks for the types of input data.
Then it generates generalized association rules concerning
the possible combinations of influencing factors and target
columns. In the second step, the tool provides aggregate
values, the conditional probability of the target column for
each combination of influencing factors and target column.
For SR, the tool calculates conditional probability and the
mean value for the numeric target column concerning the
influencing factors. For ARM operations, the tool calculates

FIGURE 10. Number of records in datasets.

the support, confidence, and lift. For OLAP operations, the
tool computes conditional averages. An overview of the com-
putation of different SR, OLAP, and ARM operations is given
in Fig. 8. In the report, the blue color code shows ARM
operations. The green color code displays the target column,
and the red color code indicates the influencing factors.

We have analyzed the performance of the proposed tool
with three datasets. The performance of the tool varies with
the number of records. If the number of records in a dataset
is high, the tool has higher running time and slow per-
formance. In Fig. 9, the performance variation induced by
the number of records in a dataset is shown. The Dataset
NJ Teacher has a huge number of records; therefore, its
running time is 36, 650 milliseconds. Dataset DC Public
Employees has 33, 424 records. Therefore, its running time
is 22, 090 milliseconds, and the sample dataset UDS1 has a
small number of records, i.e., 1, 470; therefore, its running
time is 2, 030 milliseconds. Running time and performance
variation of the proposed tool induced by the number of
records in the datasets is shown in Fig. 10. A summary of
records in datasets and performance variation of the tool with
the datasets is given in Fig. 11.

C. ADVANTAGES OF THE PROPOSED TOOL OVER
EXISTING DECISION SUPPORT TOOLS
In this section, we compare the capabilities of the proposed
tool with one of the state of the art decision support platforms,
i.e., RapidMiner [70].

Unlike any other decision support tool, the proposed
tool altogether computes SR operations, i.e., conditional
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FIGURE 11. Performance summary of the tool under two real datasets and one synthetic dataset.

FIGURE 12. In the proposed tool: a sample project for generating all possible combinations of influencing factors against target
columns.

probability, OLAP operation, i.e., conditional averages,
and ARM operations, i.e., support, confidence, and lift,
see Fig. 12. In addition, the tool computes the aver-
age value of a numerical target column against all pos-
sible combinations of influencing factors. In Fig. 8, a
sample report is given for generating all possible com-
binations of influencing factors against the target col-
umn. However, in RapidMiner, to calculate the average

value of a numerical target column against all possible
combinations of influencing factors, a decision-maker needs
to create multiple connections for all the possible combina-
tions of influencing factors.Moreover, a decision-maker must
create a new project for each dataset and repeatedlymodify its
columns and combinations. Therefore, in Fig. 13, we provide
a sample use case to generate all possible combinations of
influencing factors against the target column in RapidMiner.
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FIGURE 13. In RapidMiner: a sample project for generating all possible combinations of influencing factors against target columns.

TABLE 14. A sample list of premises and conclusions generated by
RapidMiner for the influencing factors and target column.

Additionally, in RapidMiner, the influencing factors and
their values are stored in a single column called the ‘con-
clusion’ column as ‘‘influencing factors=value’’. The target
column and its values are stored in the ‘premises’ column as
‘‘Target Column=value’’. A sample list of premises and con-
clusions generated by RapidMiner for the influencing factors
and target column is displayed in Table 14. The representation
of the target factors and influencing factors is difficult to
understand. It is hard for decision-makers to identify each
factor and its instance from the multiple tables. However, the

proposed tool creates a separate column for each factor to
identify the target column and influence factors quickly. In the
tool, a decision-maker can select the target column and all
influencing factors at once to generate all combinations of
target factors and all influencing factors.

VI. FUTURE WORK
This paper provides a foundation for uncovering the semantic
correspondences betweenDSTs and utilizing them to develop
a framework for the unified usages of DSTs. However, the
research is yet limited in scope to find the semantic corre-
spondences between the three DSTs only; therefore, in the
near future, more DSTs can be investigated to identify the
semantic correspondences between them to develop cutting-
edge frameworks for next-generation decision support tools.
The unified usage of DSTswill not only be helpful in building
robust frameworks for a variety of decision support tools but
also open a new domain of research for hybrid DSTs.

12810 VOLUME 10, 2022



R. Sharma et al.: Novel Framework for Unification of Association Rule Mining, OLAP and SR

Furthermore, we intend to build an advanced platform by
implementing additional features in the proposed tool, e.g.,
Pearson correlation, regression, etc. We are also working on
a new measure to identify any instance of Simpson’s paradox
in Big Data. Implementing these measures in the proposed
platform will enable decision-makers to determine the gen-
uine and unbiased impact factors.

The proposed tool has some performance issues with
large datasets momentarily; therefore, we plan to scale up
the performance of the tool by utilizing high-performance
computing (HPC) infrastructure and making it available to
the decision-makers. We intend to build it as a trustworthy
platform and grow as a service provider in the near future.

VII. CONCLUSION
In this paper, we analyzed a series of approaches to over-
come the divide between the three most popular DSTs, i.e.,
SR, OLAP and ARM. We contributed by elaborating the
semantic correspondences between the foundations of SR,
OLAP and ARM, i.e., probability theory, relational algebra
and the itemset apparatus, respectively. The support of an
itemset corresponds to the probability of a corresponding
event and the confidence of an association rule corresponds
to the conditional probability of two corresponding events.
Furthermore, the OLAP average aggregate function corre-
sponds to conditional expected values, which closes the loop
between ARM, OLAP and probability theory with respect to
the most important constructs in ARM and OLAP. We have
proposed a novel framework for the unification of DSTs and
implemented a tool to validate the concept of unification. The
tool provides unified usage of DSTs in a classical decision
support process and clarifies in how far the operations of SR,
ARM, and OLAP can complement each other in understand-
ing data, data visualization and decision making. The tool
was developed on the basis of an open-source framework and
tested with two real datasets and one synthetic dataset. The
results and performance of the tool show valuable contribu-
tions towards developing the next-generation DSSs.

REFERENCES
[1] S. M. Stigler, The History of Statistics: The Measurement of Uncertainty

Before 1900. Cambridge, MA, USA: Harvard Univ. Press, 1986.
[2] G. A. Gorry and S. M. S. Morton, ‘‘A framework for management infor-

mation systems,’’ Alfred P. Sloan School Manage., Massachusetts Inst.
Technol., Cambridge, MA, USA, Tech. Rep. 510-71, Feb. 1971.

[3] N. H. Nie, D. H. Bent, and C. H. Hull, SPSS: Statistical Package for the
Social Sciences. New York, NY, USA: McGraw-Hill, 1970.

[4] SAS User’s Guide: Statistics; Version, 5th ed., SAS Institute, Cary, NC,
USA, 1987.

[5] E. Codd, S. Codd, and C. Salley, Providing OLAP to User-Analysts: An IT
Mandate. East Falmouth, MA, USA: E. F. Codd and Associates, 1993.

[6] R. Agrawal, T. Imieliński, and A. Swami, ‘‘Mining association rules
between sets of items in large databases,’’ ACM SIGMOD Rec., vol. 22,
no. 2, pp. 207–216, 1993.

[7] S. Chaudhuri and U. Dayal, ‘‘Data warehousing and OLAP for decision
support,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data (SIGMOD),
1997, pp. 507–508, doi: 10.1145/253260.253373.

[8] Q.Wang, J. You, B. Zou, Y. Chen, X. Huang, and L. Jia, ‘‘Reduced quotient
cube: Maximize query answering capacity in OLAP,’’ IEEE Access, vol. 9,
pp. 141524–141535, 2021.

[9] W. Thurachon and W. Kreesuradej, ‘‘Incremental association rule mining
with a fast incremental updating frequent pattern growth algorithm,’’ IEEE
Access, vol. 9, pp. 55726–55741, 2021.

[10] H. Zhu, ‘‘On-line analytical mining of association rules,’’ M.S. thesis, Brit.
Columbia, Canada, School Comput. Sci., Simon Fraser Univ., British, CO,
Canada, 1998.

[11] M. Kamber, J. Han, and J. Y. Chiang, ‘‘Metarule-guided mining of multi-
dimensional association rules using data cubes,’’ in Proc. KDD 3rd Int.
Conf. Knowl. Discovery Data Mining (KDD), 1997, pp. 207–210.

[12] D. Draheim, ‘‘Future perspectives of association rule mining based on
partial conditionalization (DEXA’2019 keynote),’’ in Proc. DEXA 30th Int.
Conf. Database Expert Syst. Appl. in Lecture Notes in Computer Science,
vol. 11706. Cham, Switzerland: Springer, 2019, pp. 40–49.

[13] G. Piatetsky. Top Analytics, Data Science and Machine Learning
Software. Accessed: Dec. 21, 2021. [Online]. Available: https://www.
kdnuggets.com/2019/05/poll-top-data-science-machine-learning-
platforms.html

[14] J. Han, Y. Fu, W. Wang, J. Chiang, O. R. Zaïane, and K. Koperski,
‘‘DBMiner: Interactive mining of multiple-level knowledge in relational
databases,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data (SIGMOD),
1996, p. 550, doi: 10.1145/233269.280356.

[15] R. Sharma and S. A. Peious. Towards Unification of Decision
Support Technologies: Statistical Reasoning, OLAP and Association
Rule Mining. Accessed: Dec. 21, 2021. [Online]. Available:
https://github.com/rahulgla/unification

[16] S. A. Peious, R. Sharma, M. Kaushik, S. A. Shah, and S. B. Yahia,
‘‘Grand reports: A tool for generalizing association rule mining to numeric
target values,’’ in Proc. DaWaK 22nd Int. Conf. Data Warehousing Knowl.
Discovery in Lecture Notes in Computer Science, vol. 12393. Cham,
Switzerland: Springer, 2020, pp. 28–37.

[17] R. P. Salas, G. D. Edelson, P. S. Kleppner, and R. S. Shaver, ‘‘Data
processing apparatus and method for a reformattable multidimensional
spreadsheet,’’ U.S. Patent 5 317 686, May 31, 1994.

[18] H. Wang, ‘‘Intelligent agent-assisted decision support systems: Integration
of knowledge discovery, knowledge analysis, and group decision support,’’
Expert Syst. Appl., vol. 12, no. 3, pp. 323–335, Apr. 1997.

[19] W. Fan, H. Lu, S. E. Madnick, and D. Cheung, ‘‘DIRECT: A system for
mining data value conversion rules from disparate data sources,’’ Decis.
Support Syst., vol. 34, no. 1, pp. 19–39, Dec. 2002.

[20] N. Bolloju, M. Khalifa, and E. Turban, ‘‘Integrating knowledge man-
agement into enterprise environments for the next generation decision
support,’’ Decis. Support Syst., vol. 33, no. 2, pp. 163–176, Jun. 2002.

[21] J. H. Heinrichs and J.-S. Lim, ‘‘Integrating web-based data mining tools
with business models for knowledge management,’’ Decis. Support Syst.,
vol. 35, no. 1, pp. 103–112, Apr. 2003.

[22] V. Cho and E. W. T. Ngai, ‘‘Data mining for selection of insurance sales
agents,’’ Expert Syst., vol. 20, no. 3, pp. 123–132, Jul. 2003. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-
0394.00235

[23] N. Jukić and S. Nestorov, ‘‘Comprehensive data warehouse exploration
with qualified association-rule mining,’’ Decis. Support Syst., vol. 42,
no. 2, pp. 859–878, Nov. 2006.

[24] R. Rupnik, M. Kukar, and M. Krisper, ‘‘Integrating data mining and
decision support through data mining based decision support system,’’
J. Comput. Inf. Syst., vol. 47, no. 3, pp. 89–104, 2007.

[25] S. T. March and A. R. Hevner, ‘‘Integrated decision support systems:
A data warehousing perspective,’’ Decis. Support Syst., vol. 43, no. 3,
pp. 1031–1043, Apr. 2007.

[26] Z. Shi, Y. Huang, Q. He, L. Xu, S. Liu, L. Qin, Z. Jia, J. Li, H. Huang, and
L. Zhao, ‘‘MSMiner—A developing platform for OLAP,’’ Decis. Support
Syst., vol. 42, no. 4, pp. 2016–2028, Jan. 2007.

[27] N. Di Domenica, G. Mitra, P. Valente, and G. Birbilis, ‘‘Stochastic pro-
gramming and scenario generation within a simulation framework: An
information systems perspective,’’ Decis. Support Syst., vol. 42, no. 4,
pp. 2197–2218, Jan. 2007.

[28] M. Charest, S. Delisle, O. Cervantes, and Y. Shen, ‘‘Bridging the gap
between data mining and decision support: A case-based reasoning and
ontology approach,’’ Intell. Data Anal., vol. 12, no. 2, pp. 211–236,
Apr. 2008.

[29] Z. Y. Zhuang, L. Churilov, F. Burstein, and K. Sikaris, ‘‘Combining
data mining and case-based reasoning for intelligent decision support for
pathology ordering by general practitioners,’’ Eur. J. Oper. Res., vol. 195,
no. 3, pp. 662–675, Jun. 2009.

VOLUME 10, 2022 12811

http://dx.doi.org/10.1145/253260.253373
http://dx.doi.org/10.1145/233269.280356


R. Sharma et al.: Novel Framework for Unification of Association Rule Mining, OLAP and SR

[30] S. Liu, A. H. B. Duffy, R. I. Whitfield, and I. M. Boyle, ‘‘Integration
of decision support systems to improve decision support performance,’’
Knowl. Inf. Syst., vol. 22, no. 3, pp. 261–286, Mar. 2010.

[31] Y. Peng, Y. Zhang, Y. Tang, and S. Li, ‘‘An incident information manage-
ment framework based on data integration, data mining, and multi-criteria
decision making,’’ Decis. Support Syst., vol. 51, no. 2, pp. 316–327, 2011.

[32] H. Ltifi, C. Kolski, M. B. Ayed, and A. M. Alimi, ‘‘A human-centred
design approach for developing dynamic decision support system based
on knowledge discovery in databases,’’ J. Decis. Syst., vol. 22, no. 2,
pp. 69–96, Apr. 2013, doi: 10.1080/12460125.2012.759485.

[33] J. Dong, H. S. Du, S. Wang, K. Chen, and X. Deng, ‘‘A framework of
web-based decision support systems for portfolio selection with OLAP and
PVM,’’ Decis. Support Syst., vol. 37, no. 3, pp. 367–376, Jun. 2004, doi:
10.1016/S0167-9236(03)00034-4.

[34] I. Fister and I. Fister, Jr., ‘‘UARMSolver: A framework for association rule
mining,’’ 2020, arXiv:2010.10884.

[35] A. Hogan, E. Blomqvist,M. Cochez, C. D’amato, G. D.Melo, C. Gutierrez,
S. Kirrane, J. E. L. Gayo, R. Navigli, S. Neumaier, A.-C.-N. Ngomo,
A. Polleres, S. M. Rashid, A. Rula, L. Schmelzeisen, J. Sequeda, S. Staab,
and A. Zimmermann, ‘‘Knowledge graphs,’’ ACM Comput. Surv., vol. 54,
no. 4, pp. 1–37, May 2022, doi: 10.1145/3447772.

[36] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, ‘‘From data mining to
knowledge discovery in databases,’’ AI Mag., vol. 17, no. 3, p. 37, 1999.

[37] H. X. Li and L. D. Xu, ‘‘Feature space theory – a mathematical foundation
for data mining,’’ Knowl.-Based Syst., vol. 14, nos. 5–6, pp. 253–257,
Aug. 2001, doi: 10.1016/S0950-7051(01)00103-4.

[38] Y. Zhu, C. Bornhövd, D. Sautner, and A. P. Buchmann, ‘‘Materializing
web data for OLAP and DSS,’’ in Proc. WAIM 1st Int. Conf. Web-Age Inf.
Manage. Berlin, Germany: Springer, 2000, pp. 201–214.

[39] K. Gandhi, B. Schmidt, and A. H. C. Ng, ‘‘Towards data mining based
decision support in manufacturing maintenance,’’ Proc. CIRP, vol. 72,
pp. 261–265, Jan. 2018.

[40] T. Imielinski, L. Khachiyan, and A. Abdulghani, ‘‘Cubegrades: Gener-
alizing association rules,’’ Data Mining Knowl. Discovery, vol. 6, no. 3,
pp. 219–257, 2002.

[41] R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang, ‘‘Exploratory
mining and pruning optimizations of constrained associations rules,’’ ACM
SIGMOD Rec., vol. 27, no. 2, pp. 13–24, 1998.

[42] L. V. S. Lakshmanan, R. Ng, J. Han, and A. Pang, ‘‘Optimization of
constrained frequent set queries with 2-variable constraints,’’ inProc. ACM
SIGMOD Int. Conf. Manage. Data (SIGMOD), 1999, pp. 157–168, doi:
10.1145/304182.304196.

[43] K.-N. T. Nguyen, L. Cerf, M. Plantevit, and J.-F. Boulicaut, ‘‘Multi-
dimensional association rules in Boolean tensors,’’ in Proc. SDM 11th
SIAM Int. Conf. Data Mining. Philadelphia, PA, USA: SIAM, 2011,
pp. 570–581.

[44] S. Chaudhuri and U. Dayal, ‘‘An overview of data warehousing and OLAP
technology,’’ SIGMOD Rec., vol. 26, no. 1, pp. 65–74, Mar. 1997, doi:
10.1145/248603.248616.

[45] Q. Chen, U. Dayal, and M. Hsu, ‘‘An OLAP-based scalable web access
analysis engine,’’ in Proc. DaWak 2nd Int. Conf. DataWarehousing Knowl.
Discovery. Berlin, Germany: Springer-Verlag, 2000, pp. 210–223.

[46] L. Cerf, J. Besson, C. Robardet, and J.-F. Boulicaut, ‘‘Closed patterns meet
n-ary relations,’’ ACM Trans. Knowl. Discovery From Data, vol. 3, no. 1,
pp. 1–36, Mar. 2009, doi: 10.1145/1497577.1497580.

[47] J. P. Shim, M. Warkentin, J. F. Courtney, D. J. Power, R. Sharda, and
C. Carlsson, ‘‘Past, present, and future of decision support technology,’’
Decis. Support Syst., vol. 33, no. 2, pp. 111–126, 2002.

[48] J. W. Tukey, ‘‘Exploratory data analysis,’’ in Addison-Wesley Series in
Behavioral Science. Reading, MA, USA: Addison-Wesley, 1977.

[49] D. Donoho, ‘‘50 years of data science,’’ J. Comput. Graph. Statist., vol. 26,
no. 4, pp. 745–766, 2017, doi: 10.1080/10618600.2017.1384734.

[50] R. Srikant and R. Agrawal, ‘‘Mining quantitative association rules in large
relational tables,’’ ACM SIGMOD Rec., vol. 25, no. 2, pp. 1–12, Jun. 1996,
doi: 10.1145/235968.233311.

[51] M. Kaushik, R. Sharma, S. A. Peious, M. Shahin, S. Ben Yahia, and
D. Draheim, ‘‘On the potential of numerical association rule mining,’’ in
Proc. FDSE 7th Int. Conf. Future Data Secur. Eng. in Lecture Notes in
Computer Science, vol. 12466. Singapore: Springer, 2020, pp. 3–20.

[52] M. Kaushik, R. Sharma, S. A. Peious, M. Shahin, S. B. Yahia, and
D. Draheim, ‘‘A systematic assessment of numerical association rule
mining methods,’’ Social Netw. Comput. Sci., vol. 2, no. 5, pp. 1–13,
Sep. 2021.

[53] L. Geng and H. J. Hamilton, ‘‘Interestingness measures for data mining:
A survey,’’ ACM Comput. Surv., vol. 38, no. 3, pp. 1–32, Sep. 2006, doi:
10.1145/1132960.1132963.

[54] C. D. Larose and D. T. Larose, Discovering Knowledge in
Data. Hoboken, NJ, USA: Wiley, 2014, ch. Association Rules,
pp. 247–265. [Online]. Available: https://onlinelibrary.wiley.com/
doi/abs/10.1002/9781118874059.ch12

[55] R. Sharma, M. Kaushik, S. A. Peious, S. B. Yahia, and D. Draheim,
‘‘Expected vs. unexpected: Selecting right measures of interestingness,’’
in Proc. DaWaK 22nd Int. Conf. Data Warehousing Knowl. Discovery in
Lecture Notes in Computer Science, vol. 12393. Springer, 2020, pp. 38–47.

[56] B. Liu, W. Hsu, and S. Chen, ‘‘Using general impressions to analyze
discovered classification rules,’’ in Proc. KDD 3rd ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining. Palo Alto, CA, USA: AAAI Press,
1997, pp. 31–36.

[57] Y. Bastide, N. Pasquier, R. Taouil, G. Stumme, and L. Lakhal, ‘‘Mining
minimal non-redundant association rules using frequent closed itemsets,’’
in Proc. CL 1st Int. Conf. Comput. Log. Berlin, Germany: Springer, 2000,
pp. 972–986.

[58] R. J. Hilderman andH. J. Hamilton,KnowledgeDiscovery andMeasures of
Interest. The Springer International Series in Engineering and Computer
Science. New York, NY, USA: Springer, 2001.

[59] J. Han and Y. Fu, ‘‘Discovery of multiple-level association rules from large
databases,’’ in Proc. VLDB 21th Int. Conf. Very Large Data Bases, 1995,
pp. 420–431.

[60] H. Lu, L. Feng, and J. Han, ‘‘Beyond intratransaction association analysis:
Mining multidimensional intertransaction association rules,’’ ACM Trans.
Inf. Syst., vol. 18, no. 4, pp. 423–454, 2000, doi: 10.1145/358108.358114.

[61] I. Fister and I. Fister, ‘‘Association rules over time,’’ 2020,
arXiv:2010.03834.

[62] P. Fournier-Viger, J. Li, J. C.-W. Lin, T. T. Chi, and R. U. Kiran,
‘‘Mining cost-effective patterns in event logs,’’ Knowl.-Based Syst.,
vol. 191, Mar. 2020, Art. no. 105241. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0950705119305581

[63] M. Shahin, S. A. Peious, R. Sharma, M. Kaushik, S. B. Yahia, S. A. Shah,
and D. Draheim, ‘‘Big data analytics in association rule mining: A sys-
tematic literature review,’’ in Proc. 3rd Int. Conf. Big Data Eng. Technol.
(BDET), Jan. 2021, pp. 40–49, doi: 10.1145/3474944.3474951.

[64] P. Y. Taser, K. U. Birant, and D. Birant, ‘‘Multitask-based association rule
mining,’’ Turkish J. Elect. Eng. Comput. Sci., vol. 28, no. 2, pp. 933–955,
2020.

[65] K. E. Iverson, A Programming Language. Hoboken, NJ, USA: Wiley,
1962.

[66] R. Schutt and C. O’Neil, Doing Data Science: Straight Talk From the
Frontline. Sebastopol, CA, USA: O’Reilly Media, 2013.

[67] S. Naik. (2016). NJ Teacher Salaries. [Online]. Available:
https://data.world/sheilnaik/nj-teacher-salaries-2016

[68] M. Kalish. (2011). DC Public Employee Salaries. [Online]. Available:
https://data.world/codefordc/dc-public-employee-salaries-2011

[69] R. Sharma and S. A. Peious. (2020). UDS1. [Online]. Available:
https://github.com/rahulgla/unification/blob/master/UDS1.xlsx

[70] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler, ‘‘YALE:
Rapid prototyping for complex data mining tasks,’’ in Proc. 12th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD), 2006,
pp. 935–940.

RAHUL SHARMA (Graduate Student Member,
IEEE) received the B.Tech. and M.Tech. degrees
in computer science engineering from Dr. A. P. J.
Abdul Kalam Technical University, India. He is
currently pursuing the Ph.D. degree in computer
science engineering with the Information Systems
Group, Tallinn University of Technology, Estonia.
He was an Assistant Professor with the Depart-
ment of Information Technology, Ajay Kumar
Garg Engineering College, Ghaziabad, India. His

research interests include association rule mining, data science, big data,
machine learning, and deep learning.

12812 VOLUME 10, 2022

http://dx.doi.org/10.1080/12460125.2012.759485
http://dx.doi.org/10.1016/S0167-9236(03)00034-4
http://dx.doi.org/10.1145/3447772
http://dx.doi.org/10.1016/S0950-7051(01)00103-4
http://dx.doi.org/10.1145/304182.304196
http://dx.doi.org/10.1145/248603.248616
http://dx.doi.org/10.1145/1497577.1497580
http://dx.doi.org/10.1080/10618600.2017.1384734
http://dx.doi.org/10.1145/235968.233311
http://dx.doi.org/10.1145/1132960.1132963
http://dx.doi.org/10.1145/358108.358114
http://dx.doi.org/10.1145/3474944.3474951


R. Sharma et al.: Novel Framework for Unification of Association Rule Mining, OLAP and SR

MINAKSHI KAUSHIK received the B.Tech. and
M.Tech. degrees in computer science engineer-
ing from Dr. A. P. J. Abdul Kalam Technical
University, India. She is currently pursuing the
Ph.D. degree in computer science engineeringwith
the Information Systems Group, Tallinn Univer-
sity of Technology, Estonia. Her research interests
include association rule mining, big data, machine
learning, and deep learning.

SIJO ARAKKAL PEIOUS received the master’s
degree in computer application from Annamalai
University, India, in 2011, and the master’s degree
in e-governance technologies and services from
the Tallinn University of Technology, Estonia,
in 2019, where he is currently pursuing the Ph.D.
degree with the Department of Software Science.
His research interests include association rule min-
ing, big data, machine learning, and deep learning.

ALEXANDRE BAZIN received the Ph.D. degree
from Université Pierre et Marie Curie, in 2014.
He is currently working at the Lorraine Research
Laboratory in Computer Science and its Applica-
tions (LORIA), Nancy, France, as a Postdoctoral
Researcher. His research interests include lattice
theory, symbolic approaches to pattern mining,
and explainable artificial intelligence.

SYED ATTIQUE SHAH received the Ph.D. degree
from the Institute of Informatics, Istanbul Techni-
cal University, Istanbul, Turkey. During his Ph.D.
degree, he studied as a Visiting Scholar with the
National Chiao Tung University, Taiwan, The Uni-
versity of Tokyo, Japan, and the Tallinn University
of Technology, Estonia, where he completed the
major content of his thesis. He worked as an Assis-
tant Professor and the Chairperson at the Depart-
ment of Computer Science, BUITEMS, Quetta,

Pakistan. Hewas also engaged as a Lecturer at the Data SystemsGroup, Insti-
tute of Computer Science, University of Tartu, Estonia. His research interests
include big data analytics, cloud computing, information management, and
the Internet of Things.

IZTOK FISTER, JR. (Member, IEEE) received the
B.Sc., M.Sc., and Ph.D. degrees in computer sci-
ence from the University of Maribor, Slovenia.
He is currently an Assistant Professor at the Uni-
versity of Maribor. He has published more than
120 research articles in referred journals, confer-
ences, and book chapters. His research interests
include data mining, pervasive computing, opti-
mization, and sport science. He has acted as a
program committee member of more than 30 inter-

national conferences. Furthermore, he is a member of the editorial boards of
five different international journals.

SADOK BEN YAHIA received the Habilitation
degree to lead researches in computer sciences
from the University of Montpellier, in 2009. His
experience in teaching computer science and infor-
mation systems is around 20 years. He was a
Teaching Assistant with the Faculty of Sciences,
Tunis, for two years, an Assistant Professor for
seven years, and an Associate Professor for four
years. Since 2013, he has been a Full Professor
with the Faculty of Sciences. He has been a Pro-

fessor with the Tallinn University of Technology (TalTech), since 2019.
His research interests mainly include combinatorial aspects in big data and
their applications to different fields, such as data mining, combinatorial
analytics (maximum clique problem and minimal transversals), and smart
cities (information aggregation and dissemination and traffic prediction).

DIRK DRAHEIM received the Ph.D. degree
from Freie Universität Berlin and the Habilita-
tion degree fromUniversität Mannheim, Germany.
He is currently a Full Professor of information
systems and the Head of the Information Systems
Group, Tallinn University of Technology, Estonia.
The Information SystemsGroup conducts research
in large and ultra-large-scale IT systems. He is
also an initiator and a leader of numerous digital
transformation initiatives.

VOLUME 10, 2022 12813


