
ERK'2023, Portorož, 309-312 309

Turn Action Extractions into Game Agent Module Decisions

Damijan Novak, Iztok Fister ml.

Institute of Informatics, University of Maribor, Koroška Cesta 46, 2000 Maribor, Slovenia

damijan.novak@um.si, iztok.fister1@um.si

Abstract. In this article, the research in Real-Time

Strategy games is made by utilizing Association Rule

Mining to extract relevant opponent actions, and use

those extractions as viable information input in game

agent modules. The Self-Preservation Module is

presented, which supports a game agent when dealing

with game units on the game field. The module is

positioned at the reactive level of the agent framework.

Its main purpose is to constantly collect game world

information and purify, extract, and organize it to

provide instant threat assessments regarding the units

under the game agents' control. The data gathered show

distinctive opponent action variations, valuable in

module decision-making.

1 Introduction

During the last two decades, Real-Time Strategy (RTS)

games have become one of the best testbeds for research

of Artificial Intelligence (AI) in games research [1]. The

main reason for this growth is that RTS games offer

plenty of challenges for researchers, and there were also

some tremendous commercial RTS game successes

(e.g., StarCraft™ [2]). The genre requires many

different areas of expertise, which the players must

consider if they want to beat the opponent successfully.

To cope with the complexity and sometimes partial

information of the game environment [3], the computer-

operated agent (a game agent) can be built modularly

(i.e., decomposing problems into more minor separate

problems) [4]. Each module is in charge of a specific

task, a range of similar tasks, or a whole discipline. So

far, a great deal of research has gone into trying to

improve particular parts (e.g., aspects such as resource

management, etc.) or the game as a whole (e.g.,

integrating the modules into higher-level architecture

[5]) [6]. Especially, there was much interest in

improving strategical and tactical planning, since they

have the most significant impact on the game’s result.

 One of the current research trends is to bring some

human elements into the RTS AI world (e.g., to mimic

the human ability to adapt to previously unseen or

unknown game situations [7]). Game agents can

incorporate human-like factors such as creativity,

adaptability, surprise tactics, activity levels, strategic

planning, intuition, and perhaps most fundamentally, for

all living beings, the will to survive. That way, the

agents could be more realistic, and adaptive, leading to

a more immersive and engaging player experience.

 Our first contribution is the Self-Preservation

Module (SPM), designed to instill a sense of self-

preservation in game units. The SPM system analyzes

the current game state and makes strategic decisions to

keep units safe, emulating the human instinct for self-

preservation. Some attempts can be found in the

literature to incorporate these game mechanics in an

agent, as seen in the allocation strategies that factor in

elements like unit health and the balance between allies

and enemies, which can be tied to the concept of self-

preservation [8]. However, our approach is more

comprehensive.

 To ensure the modules' positive impact alongside

well-established components of the RTS AI framework,

and, in the process, not interfere with any of the

components already in place, the proposal of the module

is made to enable non-invasive decisions and control

over self-preservation behavior for all units (i.e.,

keeping them out of harm's way, when in danger, if it is

not interfering with the game agents' agendas) under the

game agents' command.

 Our second contribution is to make module

decisions online adaptive by incorporating opponent

action extractions achieved through Numerical

Association Rule Mining (NARM) [9]. This innovative

approach enhances the module's ability to adapt to

changing game situations.

 The rest of this paper is organized as follows:

Section 2 delves into online adaptivity, exploring how

systems can adjust and evolve in real-time

environments. Section 3 outlines the SPM module

architecture, with every constituting part of the module

described in detail. In Section 4, the focus shifts to

action extraction driven module choices, examining the

process and its application in game agents' decision-

making. Finally, Section 5 concludes the paper.

2 Online adaptivity

The ability of AI in games to adapt to changing

environments is a significant aspect of RTS game

research. The adaptivity field is divided mainly into

offline and online adaptation. We talk about offline

adaptation when game data (relevant game observation

information like opponent actions, etc.) are collected

during the gameplay, but the information it holds is not

assessed until after the game. It can be processed after a

game has been completed, or when the game

environment is loaded next time. Offline adaptation is

usually a good choice for processes requiring many

computer resources (e.g., large amounts of data and/or

computationally heavy algorithms). Therefore, they

cannot be run during the game. The second field, online

adaptivity, to which our work also belongs, is used for

algorithms, which can process input into output in

almost real-time. That way, the proper game actions can

be taken while they still count. For example, if a

friendly unit is attacked, it must decide either to run or

fight back. It will be destroyed if it considers the

response too long and stays still. Its loss will be in vain.

310

3 Self-Preservation Module architecture

The SPM is a background worker, which works on the

reactive level of the game agents` framework. It can

bring some advantage over the opponents, which would

be overlooked otherwise. Its role is to gather

information from the game world and assess the threats

for each unit. If necessary, it can influence the game

actively, but only if the actions comply with the goals of

other modules (i.e., with game agents' permission), and

do not dramatically affect the current strategy in place.

 By default, its role is passive. This mode of

operation does not have direct command over the units,

and cannot impact the other modules. However, if the

need arises, the strategic part of the game agent can set

SPM to be active and grant it control over units. By this,

the SPM can issue orders directly to the units that it

protects, and decides appropriate actions on its own.

 SPM was designed with simplicity in mind (Figure

1). The central component of the SPM is the Safety

map. All other components are connected to it directly

or indirectly. The Safety map contains a purified version

of the current game world state and some relevant

historical information about the past events, necessary

to evaluate the threats and safety of the units.

 The current operation mode and the involvement of

SPM in a game are defined with a state variable called

Mode of operation. As described above, there are two

modes of behavior: Active and passive modes. Passive

mode is the default behavior. Active mode can only be

set from a higher module in the game agents` hierarchy.

Besides that, there are three other SPM components:

Damage Assessment Component (DAC), Action

Component (AC), and Control Component (CC). CC is

only operational when the SPM mode of operation is set

to active. SPM communicates with other modules

through four well-defined interfaces: Purified Game

Data Interface (PGDI), Passive Output Interface (POI),

Active Output Interface (AOI), and a Safety Map Data

Interface (SMDI). PGDI is an input-only interface,

while the other three are output-only interfaces.

 SPM components initialize with the game agent. In

this phase, three live game state-input parameters are

essential: The width and height of the map (provided by

the game engine's initial game state), the (ID) number of

the player for which the SPM looks over its units and

the (ID) number of the opponent. SPM then waits until

its update method is triggered. By default, the update

method is triggered between every frame (that's when

the game agent has a time slice to process its moves),

but, if need be, it can be delayed (every second, third,

etc. frame). The update method only needs the current

game state. During each SPM update, PGDI first

extracts relevant feature information (e.g., damage done

to friendly units in the last frame) and passes it to the

DAC. DAC updates the state of the Safety map as

presented with the pseudo-code in Algorithm 1.

Algorithm 1: Pseudo-code of DAC update procedure of the

Safety map

 // Initial parameter settings:
 // - color and state parameter at which point we divide cells

 // - color and state parameter at which point we destroy cells

 // - unit destroyed parameter

 // - unit was hit parameter

 // - opponent behavior changed parameter

 // - decremental change parameter with every update cycle
 // - minimal cell size

 // Tree root and purified game data info from interface
1. select cell, pgdi

2. updateTreeRateOfColorStateDrop(cell)

3. divideAllCellsThatNeedDivision(cell)
4. destroyAllCellsThatAreNoLongerNeeded(cell)

5. if pgdi.sizeOfUnitsCreated() > 0 then

6. updateTreeForUnitsCreated(cell, pgdi)
7. end if

8. updateNeeded = false

 // update tree when units are destroyed
9. if pgdi.sizeOfUnitsDestroyed() > 0 then

10. updateTreeForUnitsDestroyed(cell, pgdi)

11. updateNeeded = true
12. end if

 // update tree when units are damaged

13. if pgdi.sizeOfUnitsDamaged() > 0 then

14. updateTreeForUnitsDamaged(cell, pgdi)

15. updateNeeded = true
16. end if

 // update tree when opponent action extraction

 // behavior changed
17. if pgdi.opponentBehaviorChanged() = true then

18. updateTreeForOpponentBehaviorChanged(cell, pgdi)

19. end if
 // update tree when units move

20. if cell.listOfCells.size() > 0 then

 updateTreeWhenUnitsMove(cell)
21. end if

 // update tree for bringing lowest color bottom - up

22. if cell.listOfCells.size() > 0 and updateNeeded then
23. updateTreeToBringLowestColorUp(cell)

24. end if

Figure 1. Self-Preservation Module architecture.

311

 AC then uses a Safety map to decide on required

unit safety actions. For every action that must take

place, a message is created. The message offers

encapsulation of the following data: Which unit is in

danger, the threat level, the cell in which the unit is

positioned (i.e., a cell from a game tree, which is saved

in the Safety map), and the position vector to where the

unit should move to. If the default passive mode is

activated, a list of messages gets passed to POI,

otherwise to AOI.

 The opponent action extraction process is made in

the PGDI component of the SPM, and the data are

pushed to the DAC. The DAC updates the Safety Map

by considering many factors (e.g., a unit was damaged),

including the action extraction data (blue colored lines

17 – 19 in Algorithm 1 signal where the opponent

behavior changes are used to update the tree). The

Safety map as data storage is designed dynamic as the

quad tree (a tree data structure with up to four children)

seen in Figure 2, so we only use memory when

necessary. Meaning that, instead of designing a memory

overview of a battle game map in a grid-like structure,

a dynamic design allocation fashion is made of only

»reserving a cell when units are present in the cell«.

Figure 2. Quad tree structure.

 The DAC continuously updates the quad-tree

following the initial parameter settings in Algorithm 1

pseudocode. For example, if DAC requires greater

granulation, the cell can be divided further, but only to

the minimally set cell size. The cell can be divided

when the units belong to more than one region (as seen

in Figure 2).

 The AC then has to decide if any friendly unit's

color (i.e., status) has changed to dangerous (i.e., the

unit is in danger). The color of each cell changes

constantly. Color threat levels are depicted in Figure 3.

The change in color towards black is triggered by

increasing danger. Increasing danger happens when a

friendly unit is damaged or destroyed, or when an

opponent has changed action tactics towards attacks.

The change towards white happens gradually with the

passing of time.

Figure 3. Color threat levels.

4 Action extraction driven module

choices

In this section, the concept of action extraction as it

pertains to game agents' decision-making processes is

explored. First, the action extraction process is

explained. Second, the experiment tests the feasibility of

using action extractions in game agents’ decision-

making processes.

4.1 Action extraction process

The important function of SPM is to react to the

opponent's strategy derived from the game states and

actions taken so far in online mode (i.e., while the game

is being actively played and the opponent's actions

choices are imperative for the gameplay). The

opponent's behavior can be non-deterministic; the same

game-state can generate different reactions at different

times. Only some of the moves have a significant

impact on the game. For useful information extraction,

the Numerical Association Rule Mining (NARM)

method was used [10]. Association Rule Mining (ARM)

is a data mining technique that finds data patterns

representing relationships between items. ARM operates

with binary data; NARM can also operate with

numerical data.

 The association rules were derived based on the

gaming state and actions recorded from the beginning of

the game. Only the association rules that contain the

opponent's action and high-enough confidence were

kept. Then, each action's frequency (the number of

occurrences) is calculated. The result is a support vector

of each possible (valid) opponent's actions.

4.2 Experiment: Action extraction driven module

choices

The experiment was designed in a microRTS simulation

environment [11]. The microRTS environment was

designed with rules that mimic fully-fledged RTS

games, but are of lower dimensionality (e.g., instead of

the unit being able to move with pixel or coordinate

system precision, it can only move up, down, left, or

right for one cell at a time). In our case, its purpose is to

provide the live game data for the NARM action

extraction process. Features gathered from the

microRTS environment and used with the NARM

action extraction process were: The number of friendly /

enemy workers / light units / heavy units / ranged units,

a flag if a friendly base has been threatened, friendly /

enemy resources left, number of friendly / enemy bases,

and the number of enemy barracks. The actions used

were: No action taken (0), move (1), harvest (2), unit

returns (3), produce (4), and attack location (5). The

opponent chosen for the study (i.e., its data during

gameplay were recorded), was the UCT (note: The

game agent is a part of the microRTS package) with

default parameters set. The UCT agent played against

the basic built-in RandomAI.

 The data used for NARM were gathered from the

game states across the span of the whole game. The

mode of operations is such that, in each game state, the

processing set holds the feature values and opponent

actions of current and of all the game states before it. In

each frame, the set is sent to NARM for processing. The

threshold for the rules from which the actions are

extracted is, for case study purposes, set to 0.5

(inclusive of this value). After the NARM process is

312

completed, and the action extraction of the opponent is

made, the SPM can act on the received information.

 Figure 4 shows the graph of the recorded data of a

UCT agent during gameplay throughout the whole

game. The abscissa axis indicates the consecutive frame

numbers, while the ordinate axis shows the percentage

distributions of each action for that specific frame.

Figure 4. Graph showing the action percentage distributions

across the whole game.

 In Figure 5, only the percentage data of the action

attack location (5) was isolated, to show better how the

UCT agents' attack distribution changes with the

passing game time. The changes between the highs and

the lows provide the SPM with very informative data

about when the opponent is switching game action

usages, and if units are in heightened danger. Therefore,

self-preservation measures are needed.

Figure 4. Graph showing the action percentage distribution of

action attack location (5) across the whole game.

5 Conclusions

As proof of concept, the SPM was designed with three

main goals. First, the module is universal, and can be

included in every game agent using a modular design.

Second, the module is simple enough to be implemented

without much complexity and easily integrated into

game agents. Third, it should not interfere with an

active strategy in progress unless the game agent

explicitly decides to use the module.

 During initial testing of connecting the SPM with

action extractions provided by NARM, it was noticed

that, at the beginning of gameplay, the action extraction

processing was possible in online mode, while, later on,

when the sets of game features and actions stacked up,

the game frame time slices (100 milliseconds) were

exceeded, and the module operation resembled more

that of the offline mode.

 The data gathered on opponent behavior

demonstrate a diverse range of action variations, as

illustrated by the fluctuations in the two graphs

representing agents' behavioral changes throughout the

game. Overall, such distinct opponent action variations

are crucial for module gameplay decision-making. With

that in mind, future work will compare our approach

with modern algorithms, such as the Policy Proximal

Optimization (PPO) algorithm [12]. Using PPO, an

evaluation could study the balance between self-

preservation and other RTS game objectives. The

feasibility of employing PPO for real-time control of

specific game units or groups of units will also be

examined.

Funding
This research was funded by the Slovenian Research

Agency Research Core Funding No. P2-0057.

References

[1] M. Buro, "Real-Time Strategy Games: A New AI Research
Challenge," in IJCAI'2003, Mexico: Morgan Kaufmann, pp.
1534–1535, 2003.

[2] M. J. Kim, K. J. Kim, S. Kim, and A. K. Dey, "Evaluation of
starcraft artificial intelligence competition bots by experienced
human players," In Proceedings of the 2016 CHI Conference
Extended Abstracts on Human Factors in Computing Systems,
pp. 1915-1921, May, 2016.

[3] G. Synnaeve, and P. Bessiere, "Multiscale Bayesian modeling
for RTS games: An application to StarCraft AI," IEEE Trans.
Comput. Intell. AI Games, vol. 8(4), pp. 338-350, 2015.

[4] S. Ontanón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill,
and M. Preuss, "Survey of Real-Time Strategy Game AI
research and competition in starcraft," IEEE Trans. Comput.
Intell. AI Games, vol. 5(4), pp. 293-311, 2013.

[5] N. A. Barriga, M. Stanescu, and M. Buro, "Building placement
optimization in real-time strategy games," In Tenth Artificial
Intelligence and Interactive Digital Entertainment Conference,
September, 2014.

[6] K. Adil, F. Jiang, S. Liu, W. Jifara, Z. Tian, and Y. Fu, "State-
of-the-art and open challenges in RTS game-AI and Starcraft,"
Int. J. Adv. Comput. Sci. Appl, vol. 8(12), pp. 16-24, 2017.

[7] R. Lopes and R. Bidarra, “Adaptivity Challenges in Games and
Simulations: A Survey”, IEEE Trans. Comput. Intell. AI Games,
3(2), pp. 85-99, 2011.

[8] K. D. Rogers, and A. A. Skabar, “A micromanagement task
allocation system for real-time strategy games”, IEEE Trans.
Comput. Intell. AI Games, 6(1), pp. 67-77, 2014.

[9] D. Novak, D. Verber, J. Dugonik, and I. Fister Jr. "Action-Based
Digital Characterization of a Game Player," Mathematics, 11(5),
1243, 2023.

[10] M. Kaushik, R. Sharma, S. A. Peious, M. Shahin, S. Ben Yahia,
and D. Draheim, "On the potential of numerical association rule
mining," In International Conf. on Future Data and Security
Engineering, Springer, Singapore, pp. 3-20, November, 2020.

[11] S. Ontanón, "The combinatorial multi-armed bandit problem and
its application to real-time strategy games," In Ninth Artificial
Intelligence and Interactive Digital Entertainment Conference,
pp. 58 – 64, 2013.

[12] Y. Wang, H. He, and X. Tan, "Truly proximal policy
optimization," In Uncertainty in Artificial Intelligence, PMLR,
pp. 113-122, 2020.

