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Abstract. This paper presents a tinyNARM which is an experimen-
tal effort in approaching/tailoring the classical Numerical Association
Rule Mining to limited hardware devices, precisely on ESP32 micro-
controllers so that devices do not need to depend on in-cloud remote
servers. The tinyNARM reduces the number of attributes in the trans-
action database by discretizing the continuous numeric attributes, and
replacing the stochastic evolutionary algorithm for association rule min-
ing with its deterministic counterpart. The preliminary results of the
comparative study, in which the in-cloud NiaARM and the on-device
tinyNARM were included by mining several UCI ML datasets, revealed
that the quality of mined association rules and the time complexity were
good enough for continuing the research in the direction of the tinyML.
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1 Introduction

The problem of global warming is, now more than ever, one of the most frequent
topics in mainstream media. The same topic is also daily on the tables of many
world politicians who are responsible for taking action to mitigate the effect of
the warming Earth [18]. Although fuel is the primary pollutant in terms of emis-
sions that have a significant impact on global warming Artificial Intelligence (AI)
is nowadays also responsible for producing the carbon footprint [20], especially,
when running complex AI models with a high computational cost [4,15,17].

In today’s world, we are witnesses of the minimization of computer hard-
ware on the one hand, and increasing their processing power on the other. Even
today, smartphones can run complex computational models [7]. With the advent
of the Tiny Machine Learning (tinyML) research area, researchers have been
solving challenges, in how to run all phases of Machine Learning (ML) on the
same miniaturized device, i.e., smartphones, Raspberry Pi computers, different
microcontrollers, etc. The tinyML is defined broadly as a fast growing field of
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ML technologies and applications, including hardware (dedicated integrated cir-
cuits), algorithms, and software capable of performing on-device sensor (vision,
audio, IMU, biomedical, etc.) data analytics at extremely low power, typically
in the mW range and below, and hence enabling a variety of always-on use-cases
and targeting battery operated devices [13].

The motivation of the current study lies primarily in the practical utiliza-
tion of Numerical Association Rule Mining (NARM) in smart agriculture. In
our previous study [8], we developed a hardware system based on an ESP32
microcontroller consisting of several sensors for capturing the data of plants.
The whole system was intended for capturing data and transferring them to the
web server. However, the data mining part, which involved NARM, was con-
ducted on an in-cloud remote computer since the ESP32 microcontroller may
not be able to run computationally expensive algorithms.

Having the possibility to conduct data mining also on the same microcon-
troller is very practical, since it typically does not need access to the internet,
which is a bottleneck in smart agriculture in some remote areas. Secondly, hav-
ing direct access to data mining results, which can lead to potential actions, may
be more efficient.

To satisfy the previously-mentioned goals, this paper presents a novel app-
roach for NARM that aligns with tinyML for running on limited hardware
devices. The proposed deterministic algorithm is also computationally less
expensive than the original variants based on the stochastic Evolutionary Algo-
rithm (EA), and, thus, it may be dramatically closer to the green AI.

This paper defines a new algorithm called tinyNARM, and presents a detailed
experimental comparison with the competitive approach to evaluate its efficiency.
At the moment, we do not offer an implementation for the ESP32 microcon-
troller, but give a theoretical framework for implementing the tinyNARM.

In summary, the main contributions of this study are:

– a novel tinyNARM algorithm is developed for NARM,
– the tinyNARM is evaluated practically on several benchmark datasets,
– the benefit of using tinyNARM is outlined in smart agriculture.

The structure of the remainder of the paper is as follows: Sect. 2 illustrates
basic information needed by a potential reader to understand the topics that
follow. In Sect. 3, the design and implementation of tinyNARM is discussed in
detail. The experiments and the results are the subjects of Sect. 4, while the
paper is concluded with Sect. 5, where a short overview of the performed work
is summarized and the potential directions are outlined for the future work.

2 Basic Information

2.1 Numerical Association Rule Mining

The ARM problem is defined formally as follows: Let us suppose a set of objects
O = {o1, . . . , om} and transaction database Db are given, where each object oi
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for i = 1, . . . , m denotes either categorical attributes A
(cat)
i ∈ {cai,1, . . . , cai,mi

}
with a set of discrete values {cai,k} for k = 1, . . . , mi or numerical attributes

A
(num)
i ∈ {cni} with a feasible variable represented as an interval [lbi, ubi], and

each transaction T is a subset of objects T ⊆ O. Thus, the variable m designates
the number of objects, mi the number of attributes of the i-th object, lbi ∈ R
is the lower and ubi ∈ R the upper bound of the numeric interval. Then, an
association rule can be defined as an implication [1]:

X ⇒ Y, (1)

where X ⊂ O, Y ⊂ O, in X ∩ Y = ∅. The following two measures are defined
for evaluating the quality of the association rule [1]:

supp(X ⇒ Y ) =
n(X ∪ Y )

N
, (2)

and

conf (X ⇒ Y ) =
n(X ∪ Y )

n(X)
, (3)

where supp(X ⇒ Y ) ≥ Smin denotes the support and conf (X ⇒ Y ) ≥ Cmin the
confidence of the association rule X ⇒ Y . There, N in Eq. (2) represents the
number of transactions in the transaction database Db, and n(.) is the number of
repetitions of the particular rule X ⇒ Y within Db. Additionally, Cmin denotes
minimum confidence and Smin minimum support, determining that only those
association rules with confidence and support higher than Cmin and Smin are
taken into consideration, respectively.

Let us notice that each numerical attribute A
(num)
i for i = 1, . . . , m is identi-

fied by an interval of feasible values limited by their lower and upper bounds. The
broader the interval, the more association rules mined. The narrower the inter-
val, the more specific relations are discovered between attributes. Introducing
intervals of feasible values has almost two effects on the optimization: To change
the existing discrete search space to continuous, and to adapt these continuous
intervals to suit the problem of interest better.

2.2 Classical NARM Using Evolutionary Approaches

Typically, the NARM was solved using Swarm Intelligence (SI) [2] or Evolu-
tionary Algorithms (EAs) [6] due to the complexity of the problem. Both types
belong to a family of stochastic nature-inspired population-based algorithms
and differ from each other according to the principle of exploring the problem
search space. While the Darwian evolution operators (i.e., crossover and muta-
tion) [3] are applied by EAs for variation of individuals, the variation operators
in SI-based algorithms are usually guided by some natural phenomenon (i.e., the
behavior of ants or bees living in colonies). Indeed, the NiaARM framework [16],
used in our study, supports both types of NARM algorithms.
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Each individual in the NiaARM algorithm is encoded as a real-valued vector
of size D + 1:

xi = {xi,1, xi,2, xi,3
︸ ︷︷ ︸

Attr
(cat)
i,1

, xi,4, xi,5, xi,6, xi,7
︸ ︷︷ ︸

Attr
(num)
i,2

, . . . , . . . , xi,D
︸ ︷︷ ︸

Attr
(.)
i,m

, xi,D+1
︸ ︷︷ ︸

cp

}, (4)

where the categorical attributes are encoded by three and numerical ones by
four sequential elements. For instance, the first three elements 〈xi,1, . . . , xi,3〉

are decoded to the categorical attribute Attr
(cat)
i,1 = 〈πi,j , A

(cat)
i,j , Thi,j〉,

while the next four 〈xi,4, . . . , xi,7〉 to the numerical attribute Attr
(num)
i,1 =

〈πi,j , A
(num)
i,j , Thi,j〉. Thus, the variable πi,j denotes the order in the permuta-

tion of objects, A
(.)
i,j the corresponding attribute value, and Thi,j is a thresh-

old determining if the corresponding attribute is present in the rule. The
last element in the vector encodes the so-called cut point cp calculated as
cpi = ⌊xi,D+1 · (D − 1)⌋ + 1 that determines which attributes belong to the
antecedent and which to the consequent.

Obviously, the size of the vector xi is calculated as:

D =

m∑

j=1

L
(

Attr
(.)
j

)

, (5)

where the function L(.) identifies the length of either the categorical or numerical
attribute.

After decoding, the association rule X ⇒ Y is obtained from the real-valued
vector, where the quality of the association rule is evaluated using a fitness
function. The fitness function is calculated according to the following equation:

f(x
(t)
i ) =

α · supp(X ⇒ Y ) + β · conf (X ⇒ Y )

α + β
, (6)

where α, and β denote weights, supp(X ⇒ Y ) and conf (X ⇒ Y ) represent the
support and confidence of the observed association rule, respectively.

2.3 TinyML

Modern AI-oriented applications in computer vision, natural language process-
ing, and big data rely on Machine Learning (ML) methods that demand large-
scale datasets to model training in the cloud environment [10]. Obviously, these
environments support the so-called in-cloud learning that is connected with a
great demand for computing resources. On the one hand, these systems ensure
privacy and security of data, while they allow no personalization at all due to
the model’s inflexibility, suffer from a high latency, and run on expensive hard-
ware [11].

Recently, we have witnessed the advent of very powerful computer devices
(e.g., mobile devices, IoT, single-board computers) that change the view of the
traditional computing [14]. Consequently, the increasing efficiency of hardware,
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minimizing computational overhead and reducing energy costs have resulted in
the emergence of the new computational paradigm, i.e., tinyML. The tinyML
proposes the so-called on-device learning that prefers the use of ML applications
and model training on the device itself.

The advantages of the on-device learning are summarized as follows [10]:

– customized model,
– resource adaptation,
– end-to-end learning,
– on-line applicability.

The customized ML model running on limited hardware demands a large-
scale personalization. On the other hand, the personalized data are produced by
a specific person, and therefore can be stored in reduced, small-sized datasets.
Finally, the processing speed of the new hardware has also been increased dra-
matically recent years. As a result, it seems that a bright future is predicted for
tinyML.

The criteria for successful implementation of the tinyML methods on-device
are as follows [19]:

– memory footprint,
– processing speed,
– prediction accuracy.

The first criterion refers to the amount of data needed for on-device learning.
The second one estimates the time in which solutions are obtained. Usually, the
on-device learning operates in real-time conditions. The last criterion indicates
the quality of solution that must be comparable to the results of the in-cloud
learning.

3 TinyNARM

The purpose of the tinyNARM is to reduce the continuous intervals of numeric
attributes into the transaction database by introducing their discretization. In
place of the intervals, the most interesting numerical interval is determined
according to a corresponding support measure. The interval bears the char-
acteristics of the whole numeric attribute, and it is calculated in the beginning.

In the continuation, all the combinations CM
r of n possible attributes by r

selected ones are varied from r = 2, . . . , n, where the implication sign is moved
from the first to the last position in the combination of association rule in steps
of one. Thus, the best association rule is searched for regarding the support. Fur-
thermore, each of the observed combination of attributes and their corresponding
rules are also saved in an archive of the mined rules.

A pseudo-code of the TinyNARM association rule mining algorithm is illus-
trated in Algorithm 1, from which it can be seen that the transaction database

Db, consisting of categorical A
(cat)
i and numerical attributes A

(num)
i , is entered
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Algorithm 1. The tinyNARM for mining the reduced number of ARs.

Require: T = 〈o1, . . . , om〉 ⊲ Load transaction database
Ensure: arch c, best c∗ ⊲ An archive and the best combination
1: for all A(num) ∈ D do

2: Discretize A
(num)
i = {dai,j}, where di,j = ⌊max oi−min oi

N
⌋

3: Calculate frequencies supp(dai,j) =
Freq(dai,j)

N
for i = 1, . . . , Mi

4: Find the maximum element A
(dis)
i = maxj=1,...,Mi

supp(dai,j)

5: D′ = (D − A
(num)
i ) ∪ A(disc)i

6: end for

7: for all r ∈ [2, M − 1] do

8: for all c ∈ CM
r do

9: arch c ∪ ccp for cp ∈ [1, r − 1]
10: best c = maxcp∈[1,r−1] supp(ccp)
11: end for

12: best c∗ = max(best c∗, best c)
13: end for

into the data mining process. Thus, all the numeric attributes A
(num)
i are dis-

cretized as A
(dis)
i , while the original database:

Db = {A
(.)
1 , . . . , A

(num)
i , . . . , A

(cat)
j , . . . , A

(.)
M }

is transformed into a modified transaction database:

Db′ = {A
(.)
1 , . . . , A

(dis)
i , . . . , A

(cat)
j , . . . , A

(.)
M },

where each numerical attribute A
(num)
j is replaced with its representative A

(dis)
i

discrete attribute, which is calculated according to the maximum support

max supp(dai,j) =
Freq(dai,j)

M
, where the function Freq(dai,j) denotes the num-

ber of attributes’ occurrences in the transaction database.
Let us expose that the mining algorithm is deterministic, and therefore its

time complexity should be tractable [9].

4 Experiments and Results

The main goal of the experiments was to evaluate how close the results of the
competitive NiaARM can approach the results of the proposed tinyNARM. The
tinyNARM algorithm was coded in the Python programming language. Actually,
the entire Python project is available on the following link1. As a part of the
future work, we plan to run experiments on ESP32 microcontrollers, which will
result in a new C language implementation of the tinyNARM based on the
current Python prototype.

1 https://gitlab.com/firefly-cpp/tinynarm.
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4.1 Datasets

We have utilized four public datasets from the UCI ML library [5]. Table 1
presents the observed datasets with the number of corresponding features, their
types, and number of instances. All datasets are intended primarily for classifica-
tion tasks, where a class of each transaction in a dataset is counted as a standard
feature. Three types of features were used in the experiments, i.e., pure categori-
cal, pure numerical and mixed. In this case, the influence of the attributes’ types
can be evaluated on the results of the NARM.

Table 1. Datasets utilized in our study.

Dataset Type Features Instances

Abalone Categorical/Numerical 9 4,177

Breast Cancer Categorical 10 286

Nursery Categorical 9 12,960

Wine Numerical 14 178

The experiments were conducted as follows: Firstly, numerical datasets were
discretized into five classes. Then, the discretized datasets were used for data
mining in both methods. Thus, fair comparisons were ensured for both associa-
tion rule mining algorithms. Finally, a detailed analysis of the obtained results
was performed according to the various discretized datasets.

4.2 Experimental Environment

Similar to the NiaARM, the tinyNARM algorithm is also written entirely in
Python. The experiments were conducted on a Fedora Linux PC with 8 GB
RAM. The tinyNARM algorithm does not need any specific control parameters,
and, as an input, requires only the name of a discretized dataset. On the other
hand, the NiaARM was run using the Particle Swarm Optimization (PSO) as
an ARM population-based metaheuristic algorithm [12]. Indeed, the algorithm’s
parameters were set as follows during the experiments: The population size was
set to 50 individuals, while the termination condition to 10,000 fitness function
evaluations. The other PSO parameters were assigned to the default values as
suggested by the NiaARM framework.

4.3 Results

The results of the comparative analysis, in which the in-cloud NiaARM and
on-device tinyNARM were incorporated, are collected in Table 2. Both methods
discovered a lot of rules, but we took only the 20 best association rules into
account and then applied descriptive statistics of these. Table 2 aggregates the
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Table 2. Results of experiments

Algorithm Measures Abalone Breast Cancer Nursery Wine

tinyNARM max 0.743 0.823 0.667 0.511

min 0.558 0.554 0.222 0.503

mean 0.623 0.649 0.274 0.505

median 0.609 0.631 0.236 0.506

std 0.059 0.081 0.101 0.003

time 2.26 5.344 2.44 157.72

no. rules 1,320 2,504 1,320 10,027

NiaARM max 0.688 0.760 0.510 0.534

min 0.549 0.579 0.503 0.511

mean 0.605 0.638 0.505 0.519

median 0.601 0.611 0.505 0.518

std 0.041 0.057 0.002 0.007

time 14.020 13.895 16.420 15.649

no. rules 603 912 1,503 632

corresponding results according to the statistical metrics obtained by each ML
algorithm mining the four UCI ML datasets. The results were compared accord-
ing to: (1) the quality measured by the fitness (i.e., minimum, maximum, mean,
standard deviation, and median), (2) the time complexity, and (3) the number
of mined rules.

According to the quality measures, the results of both algorithms were com-
parable by mining all the four observed datasets, due to the means achieved
by both not distinguishing by more than 1 %, except for the Nursery dataset,
where the mean of the tinyNARM is for 48 % worse than by the NiaARM. On
the other hand, the results according to the time complexity showed that the
tinyNARM demanded approximately 10× more time for obtaining the compara-
ble results. The third comparison showed that the tinyNARM mined on average
more association rules.

4.4 Discussion

The experiments showed that the results of the tinyNARM are strongly depen-
dent on the type of attributes in the transaction datasets. Indeed, this algorithm
is dedicated for dealing with numerical attributes. Therefore, the results can be
deteriorated when this algorithm is applied to the transaction datasets consisting
of discrete attributes only.

On the other hand, the tinyNARM caused an increase in the time com-
plexity when the mined transaction datasets consisted of numerical attributes.
Obviously, the exhaustive search governing this algorithm is the main reason for
this undesirable behavior. Finally, the number of association rules mined by the
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observed algorithms is a consequence of the way of handling the archive, and
can be changed easily.

5 Conclusion

The paper is a preliminary experimental study that presents how to move the
in-cloud ML method to on-device tinyML, where the NARM was taken into
the account as an ML method. Although the study showed that the tinyNARM
performed well on average, some drawbacks of the approach can also be indi-
cated: For instance, in order to minimize the time complexity, the stochastic
population-based algorithm was replaced by the deterministic algorithm. Unfor-
tunately, it seems that the proposed exhaustive search can be even more time
complex in situations, where more numeric attributes exists in the transaction
datasets. As a result, a new heuristic algorithm should be found in the future to
avoid the problem.
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