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Abstract: Nature always serves as an inspiration to scientists for developing new algorithms to solve challenging
real-world problems. Building mathematical models of the brain activity has led to the emergence of artificial
neural networks (ANN) especially useful for solving problems, such as classification and regression. On the other
hand, evolutionary algorithms (EAs) inspired by Darwinian natural evolution have been successfully applied to
solve optimization, modelling and simulation problems. Differential evolution (DE) is a well-known EA that
possesses a multitude of strategies for generating an offspring solution, where the best strategy is not known in
advance. In this paper, a link between ANN and DE has been established, where the best DE strategy in each
generation is identified using the ANN regression. The task of the regression is to predict the best strategy from
an ensemble of DE strategies for each trial solution. The experiments on a suite of ten well-known functions
showed the future potential in developing this idea.
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1 Introduction

Scientists in various research areas that are confronted with solving tough real-world problems have always
searched for an inspiration in the nature. Nature not only poses the questions, but also provides answers to
these. However, this task is entrusted to scientists. In computer sciences, two nature-inspired mechanisms
influenced their development, as follows: human brains [22], and Darwinian theory of struggle for survivor [4].
The former inspiration from the nature has led to the emergence of artificial neural networks (ANN), while the
latter to evolutionary algorithms (EAs). In this paper, ANN is used to solve a regression problem in differential
evolution.

ANN is based on findings of neuroscience that mental activity consists primarily of electrochemical activity
in network of brain cells called neurons [22]. In line with this hypothesis, the first mathematical model of neurons
devised by McCulloch and Pitts [17]. According to this model, a neuron “fires”, when a linear combination of
inputs exceeds some threshold. This threshold could be either hard or soft and implements a linear classifier
useful to predict an input value as a finite set of values (e.g., color can be either {red, blue, green}). Latter, the
ANN were used also for learning problems called regression in which an appropriate numerical output value is
searched for.

On the other hand, DE has become one of the most prominent EAs for solving tough real-world optimization
problems. This population-based method was introduced by Storn and Price in 1995 [23]. Individuals in the
population representing the solution of the problem to be solved are in a form of real-valued vectors that are
subjected to the operators of crossover and mutation. Thus, a population of trial vectors is generated that
compete with their parents for survival. As a result, when a fitness of the trial vector is better than the fitness
of its parent laying in the same index position in the population, the parent is replaced by the trial (offspring)
solution.

In order to further improve the DE algorithm, its development has been conducted in several ways. For
example, adapting and self-adapting DEs assume that the parameters as set at the start of the search process
may not be appropriate in the latter phases and vice versa. Therefore, these parameters are changed during the
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run either according to a feedback of the search that determines the direction or magnitude of the change to
the strategy parameter, by encoding into a representation of solution and undergo operations of crossover and
mutation. For example, the more prominent adaptive and self-adaptive DE algorithms are jDE [3], SaDE [19],
etc. On the other hand, another kind of DE algorithms tries to improve the results of the original DE algorithm
by combining the various ensemble of parameters and mutation DE strategies [16, 24, 25]. A complete survey
of DE methods can be found in [5, 26].

This paper combines the ANN and DE algorithms in order to predict the best DE mutation strategy for
each individual in the population. Similar to parameter setting, where the best parameter values depend on
the progress of the search process, also selection of the proper DE mutation strategy is not known in advance.
Although the DE mutation strategy can be determined adaptively, like in [15], we propose the ANN regression
for predicting the best DE mutation strategy for each individual from an ensemble of DE strategies. In this way,
various DE strategies are applied for each individual, where the best value of element obtained by all strategies
in the DE ensemble are used to predict the best value of the corresponding trial vector. Although the similar
idea was already presented by Fister et al. in [7], here the emphasis on the ANN regression was exposed. On
the other hand, the test suite was broadened and the comparative study according to various dimensions of the
test functions were performed.

The structure of the remainder of the paper is as follows. In Section 2, fundamentals of ANN and DE
algorithms are presented in detail. Section 3 proposes a new DE algorithm with ANN regression (nnDE). The
experiments and the results are presented in Section 4. The paper concludes with a review of the performed
work and a closer look at the future work.

2 Background

2.1 Artificial neural networks

Origin of ANN development comes from biology. ANN can be defined as a very simplified model of a human
brain. Similar as the human brain, artificial neworks consists of many artificial neurons. Natural neuron receives
signal via synapses, which lay on dendrites or membranes of the neuron [21]. When the received input signals
are greater than the some threshold value, the neuron output is activated, and emits a signal throughout an
axon. This signal might be either sent to another synapse, or activate other neurons in the neighborhood [9]. On
basis of this natural process in the human brain, the artificial neuron is modelled by McCulloch and Pitts [17].
It also consists of many inputs (similar as synapse in human brain) that are multiplied by weigths and then
computed by a mathematical function determining the activation level of the neuron [9]. This is activated, when
the activation level exceeds the some predefined threshold value. Another function in this process computes
output signal of the neuron. Weights that play a very important role in this process can be adjusted during
the run adaptively. In general, this process is also called learning. In fact, there are three important types of
learning according to the types of feedback that is available to learn from [22]:

• supervised learning [10]: the learner observes some example input-output pairs and learns a function that
maps from input to output (e.g., backpropagation),

• unsupervised learning [13]: the learner learns patterns in the input even though no explicit feedback is
supplied (e.g., self-organizing map), and

• reinforcement learning [1]: the learner learns from a series of reinforcements (i.e., rewards or punishments).

This article uses the supervised learning, i.e., backpropagation, where artificial neurons are organized in
layers that send signal forward (feed-forward neural networks) and then, errors are propagated backwards. The
network receives inputs via neurons in the input layer, and the output of the network is given by the neurons
in the output layer. Additionaly, there may be one or more intermediate hidden layers [9]. The task of the
backpropagation is to minimize the error. At the end of each learning step, weights are adjusted such that the
error is reduced. Readers are also invited to look at a graphical representation of neural network in Fig. 1.

ANNs are widely used for solving the classification, regression, and prediction problems. Some of the well-
suited application domains, of the ANNs are, as follows: industry and business [27], data mining [2], civil
engineering [12], and a fire analysis of steel frames [11].

2.2 Differential evolution

Differential evolution (DE) belongs to the class of evolutionary algorithms and is appropriate for solving conti-
nous as well as discrete optimization problems. DE was introduced by Storn and Price in 1995 [23] and since
then many DE variants have been proposed. Some of the the most efficient DE variants are [3, 18, 19, 20, 14].
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Figure 1: Graphical representation of simple artificial neural network

The original DE algorithm is represented by real-valued vectors and is population-based. The DE supports
operators, such as mutation, crossover, and selection.

In the basic mutation, two solutions are randomly selected and their scaled difference is added to the third
solution, as follows:

u
(t)
i = x

(t)
r0 + F · (x(t)

r1 − x
(t)
r2 ), for i = 1 . . .NP , (1)

where F ∈ [0.1, 1.0] denotes the scaling factor that scales the rate of modification, while r0, r1, r2 are randomly
selected values in the interval 1 . . .NP and NP represents the population size. Note that the proposed interval
of values for parameter F was enforced in the DE community, although Price and Storn proposed the slightly
different interval, i.e., F ∈ [0.0, 2.0].

DE employs a binomial (bin) or exponential (exp) crossover. The trial vector is built from parameter
values copied from either the mutant vector generated by Eqn (1) or parent at the same index position i.
Mathematically, this crossover can be expressed as follows:

wi,j =

{
u

(t)
i,j randj(0, 1) ≤ CR ∨ j = jrand,

x
(t)
i,j otherwise,

(2)

where CR ∈ [0.0, 1.0] controls the fraction of parameters that are copied to the trial solution. The condition

j = jrand ensures that the trial vector differs from the original solution x
(t)
i in at least one element.

Mathematically, the selection can be expressed as follows:

x
(t+1)
i =

{
w

(t)
i if f(w

(t)
i ) ≤ f(x

(t)
i ),

x
(t)
i otherwise .

(3)

Crossover and mutation can be performed in several ways in differential evolution. Therefore, a specific
notation was introduced to describe the varieties of these methods (also strategies), in general. For example,
’rand/1/bin’ denotes that the base vector is randomly selected, 1 vector difference is added to it, and the number
of modified parameters in the trial/offspring vector follows a binomial distribution. The other standard DE
strategies are illustrated in Table 1. These strategies also form an ensemble of DE strategies (ES ).

Table 1: An ensemble of DE-strategies

Nr. Strategy Mutation Expression Crossover

1 Best/1/Exp x
(t+1)
i,j = best

(t)
j + F · (x(t)

r1,j − x
(t)
r2,j) exponential

2 Rand/1/Exp x
(t+1)
i,j = x

(t)
r1,j + F · (x(t)

r2,j − x
(t)
r3,j) exponential

3 RandToBest/1/Exp x
(t+1)
i,j = x

(t)
i,j + F · (best(t)i − x

(t)
i,j ) + F · (x(t)

r1,j − x
(t)
r2,j) exponential

4 Best/2/Exp x
(t+1)
i,j = best

(t)
i + F · (x(t)

r1,i + x
(t)
r2,i − x

(t)
r3,i − x

(t)
r4,i) exponential

5 Rand/2/Exp x
(t+1)
i,j = x

(t)
r1,i + F · (x(t)

r2,i + x
(t)
r3,i − x

(t)
r4,i − x

(t)
r5,i) exponential

6 Best/1/Bin x
(t+1)
i,j = best

(t)
i + F · (x(t)

r1,i − x
(t)
r2,i) binomial

7 Rand/1/Bin x
(t+1)
i,j = x

(t)
r1,j + F · (x(t)

r2,j − x
(t)
r3,j) binomial

8 RandToBest/1/Bin x
(t+1)
i,j = x

(t)
i,j + F · (best(t)i − x

(t)
i,j ) + F · (x(t)

r1,j − x
(t)
r2,j) binomial

9 Best/2/Bin x
(t+1)
i,j = best

(t)
i + F · (x(t)

r1,i + x
(t)
r2,i − x

(t)
r3,i − x

(t)
r4,i) binomial

10 Rand/2/Bin x
(t+1)
i,j = x

(t)
r1,i + F · (x(t)

r2,i + x
(t)
r3,i − x

(t)
r4,i − x

(t)
r5,i) binomial

3 The proposed algorithm

The proposed ANN regression on ensemble of DE strategies algorithm (nnDE) (pseudo-code in Algorithm 1)
modifies the generation of the trial vector in the original DE algorithm. In place of using a specific DE strategy,
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a set T of trial solutions based on the current vector xi are generated, where the DE strategy is selected
randomly in each generation step. As a result, the NP -randomly generated trial vectors are obtained in the
test set using the target vector xbest . The validation set V consists of the vector obtained by applying the
’rand/1/bin’ strategy on the current vector xi. Finally, the regression vector ri is obtained by predicting each
element of the validation vector V from the same positioned elements of NP -vectors in the test set T using the
ANN regression method.

Algorithm 1 The proposed nnDE algorithm

1: Initialize the DE population xi = (xi1, ..., xiD) for i = 1 . . .NP
2: repeat
3: for i = 1 to i ≤ NP
4: Create test set T on vector xi using random strategy from ES and target vector xbest ;
5: Create validation set V by applying strategy ’rand/1/bin’ on vector xi;
6: Build regression vector ri by applying the ANN using T and V ;
7: if (f(ri) < f(xi))
8: xi = ri;
9: end if

10: endfor
11: until (Termination condition meet)

The selection process of the original DE algorithm stays intact in nnDE, i.e., when the fitness of the regression
trial vector ri is better than the fitness of the current vector xi, the vector xi is replaced by vector ri. Note
that here only one fitness evaluation is spend because the generation of the regression vector is performed in
genotypic and not in phenotypic search space.

4 Experimental results

The goal of our experimental work is to show that using the ANN regression within the DE algorithm (nnDE)
can improve the results of the original DE algorithm significantly. In line with this, the results of nnDE are
compared with the results of the original DE as well as self-adaptive jDE [3] algorithms obtained by optimizing
the suite of ten well-known functions of dimensions D = 10, D = 20, and D = 30 taken from the literature
(Table 2). In order to complete this comparative study, also two swarm intelligence algorithms were included
namely, the classical firefly algorithm (FA) [28] and bat algorithm (BA) [29].

Table 2: Definitions of benchmark functions
f Function Definition Range

f1 Griewangk f(x) = −
∏n
i=1 cos

(
xi√
i

)
+
∑n
i=1

x2i
4000 + 1 −600 ≤ xi ≤ 600

f2 Rastrigin f(x) = n ∗ 10 +
∑n
i=1(x2

i − 10 cos(2πxi)) −15 ≤ xi ≤ 15

f3 Rosenbrock f(x) =
∑n−1
i=1 100 (xi+1 − x2

i )
2 + (xi − 1)2 −15 ≤ xi ≤ 15

f4 Ackley f(x) =
∑n−1
i=1

(
20 + e−20e

−0.2
√

0.5(x2
i+1

+x2
i
) − e0.5(cos(2πxi+1)+cos(2πxi))

)
−32.768 ≤ xi ≤ 32.768

f5 Schwefel f(x) == 418.9829 ∗D −
∑D
i=1 si sin(

√
|si|) −500 ≤ xi ≤ 500

f6 Sphere f(x) =
∑D
i=1 x

2
i −600 ≤ xi ≤ 600

f7 Easom f(x) = −(−1)D(
∏D
i=1 cos2(xi)) exp[−

∑D
i=1(xi − π)2] −2π ≤ xi ≤ 2π

f8 Michalewicz f(x) = −
∑D
i=1 sin(xi)[sin(

ix2i
π )]2·10 0 ≤ xi ≤ π

f9 Xin-She Yang f(x) = (
∑D
i=1 |xi|) exp[−

∑D
i=1 sin(x2

i )] −2π ≤ xi ≤ 2π

f10 Zakharov f(x) =
∑D
i=1 x

2
i + ( 1

2

∑D
i=1 ixi)

2 + ( 1
2

∑D
i=1 ixi)

4 −6 ≤ xi ≤ 10

The control parameters of the DE and nnDE algorithms during the test were set as follows: F = 0.5,
CR = 0.9, and NP = 100. The population size parameter NP is the same also by all algorithms in tests. The
jDE algorithm parameters were set as follows: F ∈ [0.1, 1.0], CR ∈ [0.0, 1.0]. FA used the following control
parameters: α = 0.1, β = 0.2, and γ = 0.9, while the BA algorithm parameters were set as follows: loudness
A = 0.5, pulse rate r = 0.5, and frequency Q ∈ [0.0, 2.0]. As the termination condition, the fitnes function
evaluations were used, as Tmax = 1, 000 ·D. Each function was optimized 25-times. The ANN terminates when
the error rate is snaller than zero or the maximum 1,000 iterations of back-propagations were reached. The
ANN implementation from the OpenCV library was used in the nnDE algorithm.

The obtained results of the mentioned algorithms according to mean values and their standard deviations
for ten functions of dimensions D = 10, D = 20, and D = 30 are illustrated in Table 3, from which it can
be seen that the nnDE algorithm outperformed the results of the other algorithms for all functions except the
Schwefel (f5) and the Easom (f7) functions, where the DE and jDE achieved better results.

In order to evaluate the quality of the results statistically, Friedman tests [8] were conducted to compare
the average ranks of the compared algorithms. Thus, a null-hypothesis is placed to state: two algorithms are
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Table 3: Comparison of the results of various algorithms

F D
DE jDE nnDE FA BA

Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev

f1

10 6.5E-01 1.0E-01 4.7E-01 1.0E-01 7.8E-06 3.0E-05 4.2E-01 3.3E-01 1.1E+01 7.4E+00
30 1.0E+00 3.1E-02 2.8E-01 7.5E-02 4.2E-08 1.5E-07 4.5E-01 4.3E-01 4.1E+01 1.5E+01
50 1.0E+00 2.2E-02 4.4E-02 2.8E-02 0.0E+00 0.0E+00 7.0E-01 6.3E-01 8.5E+01 2.2E+01

f2

10 4.5E+01 5.8E+00 1.9E+01 2.8E+00 1.4E-03 5.7E-03 5.0E+01 4.8E+01 1.8E+02 1.0E+02
30 1.4E+02 1.2E+01 4.4E+01 5.3E+00 5.5E-04 2.4E-03 1.5E+02 1.4E+02 6.1E+02 2.0E+02
50 2.3E+02 1.3E+01 6.6E+01 6.5E+00 1.1E-04 4.9E-04 2.4E+02 2.4E+02 1.1E+03 2.8E+02

f3

10 3.2E+01 1.3E+01 5.7E+01 3.2E+01 8.9E+00 2.0E-02 8.9E+01 6.6E+01 2.5E+05 8.4E+05
30 2.2E+02 9.2E+01 1.4E+02 6.1E+01 1.8E+01 3.8E+00 3.0E+02 2.4E+02 1.7E+06 9.5E+05
50 4.6E+02 2.3E+02 1.2E+02 7.2E+01 2.9E+01 1.3E-03 2.3E+02 1.9E+02 3.4E+06 4.0E+06

f4

10 5.8E-01 2.0E-01 2.1E-01 5.6E-02 1.1E-03 3.5E-03 2.1E+01 2.1E+01 9.0E+00 2.8E+00
30 1.6E+00 3.6E-01 9.2E-02 3.4E-02 5.9E-05 1.6E-04 2.1E+01 2.1E+01 1.4E+01 1.3E+00
50 1.8E+00 3.2E-01 3.3E-02 8.7E-03 1.6E-06 8.1E-06 2.1E+01 2.1E+01 1.4E+01 9.5E-01

f5

10 1.7E+03 1.2E+02 7.6E+02 1.7E+02 4.2E+03 4.4E-01 2.4E+03 2.4E+03 2.2E+03 3.2E+02
30 4.5E+03 2.1E+02 2.0E+03 2.5E+02 8.3E+03 2.6E+01 5.2E+03 5.2E+03 5.5E+03 4.0E+02
50 7.6E+03 4.4E+02 3.1E+03 3.2E+02 1.3E+04 3.9E+01 6.9E+03 7.0E+03 9.0E+03 6.3E+02

f6

10 9.6E+00 3.9E+00 3.5E+00 2.3E+00 1.9E-09 6.8E-09 1.0E+00 1.1E+00 3.6E+04 2.4E+04
30 9.4E+01 4.0E+01 1.9E+00 9.8E-01 3.7E-07 8.5E-07 3.0E+00 2.9E+00 1.8E+05 7.1E+04
50 1.8E+02 7.1E+01 4.1E-01 1.9E-01 1.6E-06 8.1E-06 5.6E+00 5.6E+00 2.9E+05 5.4E+04

f7

10 -1.0E+00 1.3E-03 -1.0E+00 3.3E-04 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00
30 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00
50 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

f8

10 -5.8E+00 3.6E-01 -8.4E+00 2.6E-01 -2.6E-01 6.3E-01 -2.6E+00 -2.5E+00 -1.0E-01 1.5E-01
30 -8.3E+00 4.6E-01 -1.5E+01 5.3E-01 -6.2E-01 1.1E+00 -4.2E+00 -4.2E+00 -4.7E-02 5.3E-02
50 -1.1E+01 6.7E-01 -2.1E+01 6.6E-01 -2.5E+00 1.5E+00 -5.0E+00 -4.6E+00 -3.6E-02 5.5E-02

f9

10 2.1E-03 2.3E-04 1.4E-03 1.8E-04 2.4E-04 5.5E-04 -2.3E+02 -2.2E+02 -3.2E+02 6.2E+01
30 2.9E-07 1.2E-08 1.8E-07 2.3E-08 2.4E-04 7.6E-04 -5.4E+02 -5.4E+02 -1.1E+03 1.9E+02
50 2.5E-11 1.3E-12 1.5E-11 1.3E-12 7.0E-09 2.0E-08 -9.7E+02 -1.0E+03 -2.5E+03 4.0E+02

f10

10 1.2E-01 4.6E-02 5.7E-01 2.9E-01 6.4E-18 2.9E-17 6.3E+01 5.4E+01 2.3E+01 2.4E+01
30 6.2E+00 1.9E+00 1.2E+01 4.8E+00 1.3E-08 2.3E-08 5.9E+02 2.5E+02 7.8E+01 9.5E+01
50 3.8E+01 8.7E+00 6.2E+01 2.1E+01 2.2E-06 4.9E-06 1.5E+04 8.0E+03 2.2E+02 2.2E+02

equivalent and therefore, their ranks should be equal. When the null-hypothesis is rejected, the Bonferroni-
Dunn test [6] is performed. In this test, the critical difference is calculated between the average ranks of those
two algorithms. If the statistical difference is higher than the critical difference, the algorithms are significantly
different.

For each algorithm, three Friedman tests were performed regarding data obtained by optimizing 10 functions
according to measures, as: the minimum, maximum, mean, and median values together with the standard
deviation (i.e., 50 instances per classifier). The tests were conducted at the significance level 0.05. The results
of the Friedman non-parametric test can be seen in Fig. 2 that is divided into three diagrams. Each diagram
shows the ranks and confidence intervals (critical differences) for the algorithms under consideration with regard
to the dimensions of the functions. Note that the significant difference between two algorithms is observed if
their confidence intervals denoted as thickened lines in Fig. 2 do not overlap.

DE

jDE

nnDE

FA

BA

 0  1  2  3  4  5

(a) D = 10

 0  1  2  3  4  5

(b) D = 20

 0  1  2  3  4  5

(c) D = 30

Figure 2: Results of the Friedman non-parametric test

Fig. 2.a shows that the results of DE, jDE, FA and BA are outperformed by the results of nnDE algorithm.
The DE and jDE are better than the FA and BA, but this advantage is not significant. The situation do not
considerably change when the results are compared according to dimensions D = 20 and D = 30 (Fig. 2.b
and 2.c). Also here, the results of DE, FA and BA algorithms are significantly outperformed by the results of
nnDE, while the results of jDE are also significantly better than the results of FA and BA.

5 Conclusion

This paper links the ANN with the EAs, more precisely DE, to enhance quality of the offspring generation.
Motivation behind this idea was to predict the best location of a trial vector by using an ensemble of DE
strategies. The proposed nnDE algorithm tries to find the best trial vector for each parent. The main advantage
of this approach is that regressing for the best trial vector is performed in the genotypic search space. Thus, no
additional fitness function evaluations is spent.
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On the other hand, the quality of solution obtained during the experimental investigations outperformed the
results achieved by the original DE, self-adaptive jDE and two swarm intelligence algorithms, i.e., FA and BA.
Unfortunatelly, the running time of the nnDE is enormously increased in comparison to the other algorithms in
our study. For example, optimizing the Schwefel function of dimension D = 20 demanded less than one second
by DE or jDE, while nnDE took more than seven hours.

Altough the quality of the achieved results justifies this approach, there is still a need to decrease the time
complexity of this algorithm. Almost two possible directions could be followed to decrease this complexity: an
own optimized implementation of ANN, and using the regression as a local search improvement heuristic.
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