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ABSTRACT
In this paper, we present a novel solution for the hybridiza-
tion of the bat algorithm with differential evolution strate-
gies and a random forests machine learning method. Exten-
sive experiments and tests on standard benchmark functions
have shown that these hybridized algorithms improved the
original bat algorithm significantly.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Student workshop

Keywords
bat algorithm, differential evolution, random forests, ma-
chine learning

1. INTRODUCTION
Nature has been always a source of inspiration for math-

ematicians, computer scientists, and engineers constructing
the automatic problem solver. Let us mention only two in-
spirations from the Nature that have led constructors to
reach this goal: the human brain and the Darwinian evolu-
tion [4]. The former tries to solve problems by mimicking
the functions of the human brain, and the latter by Dar-
winian survival of the fittest. As a result, the human brain
has influenced the area of artificial intelligence (AI), while
Darwinian evolution has influenced evolutionary algorithms
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(EA). Differential evolution [3, 5] (DE) is one of the most
famous classes of evolutionary algorithms.

Additionally, Swarm Intelligence (SI) was inspired by col-
lective behavior in self-organized and decentralized natu-
ral systems, e.g., ant colonies, bee hives, flocks of birds or
schools of fish [1]. Swarm intelligence is an artificial intel-
ligence (AI) discipline concerned with the design of intel-
ligent multi-agent systems. In order to improve a perfor-
mance of these general problem solvers, these algorithms
have been hybridized with problem-specific knowledge by
solving a definite problem. For example, an artificial bee
colony optimization (ABC) algorithm has been hybridized
with two different local search heuristics in order to balance
an exploration and exploitation by an large scale function
optimization in [7]. The local search heuristic also improved
results of the firefly algorithm (FA) by solving the graph
3-coloring in [8]. Interestingly, the hybrid bat algorithm
(HBA) [6] improved results of original algorithm, optimiz-
ing the suite of function, when hybridized with ’rand/1/bin’
DE-strategy.

This paper proposes the hybrid bat with random forest [2]
(HBARF). In place of original random walk direct exploita-
tion (RWDE) [12], the HBA uses the ’rand/1/bin’ DE strat-
egy for local search step, while the HBARF employs an
ensemble of ten DE-strategies and uses the random forest
machine learning method to calculate the regression vector.
Both hybrid bat algorithms were tested on a suite of five
well-known functions and compared with the original BA.
The results showed that both hybridizations significantly
improved the results of the original BA.

2. BACKGROUND

2.1 Original Bat algorithm
The phenomenon of bats’ echolocation can be briefly de-

scribed as follows. Bats use the time delay between emis-
sion and detection of the echo, and the time and loudness
difference between their two ears, in order to detect the dis-
tance, orientation and moving speed of their target prey. In
echolocation, three parameters are important, i.e., the range
of frequencies, the rate of pulse emission, and the loudness.
The frequency of pulse emission depends on the prey size,
i.e. the smaller the prey the higher the frequency. The rate
of pulse emission is speed up when bats move near their
prey. The loudness is higher when bats hunt their prey and
lower when they are homeward bound.
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The echolocation behavior of bats can be formulated as an
new optimization algorithm, where this behavior is captured
by an objective function of a specific optimization problem.
However, the following approximation of bat behavior are
idealized during development:

• All bats use echolocation to sense the distance to a
target object.

• Bats fly randomly with the velocity vi at position xi,
the frequency Qi ∈ [Qmin, Qmax] (also the wavelength
λi), the rate of pulse emission ri ∈ [0, 1], and the loud-
ness Ai ∈ [A0, Amin]. The frequency (and wavelength)
can be adjusted depending on the proximity of their
target.

• The loudness varies from a large (positive) A0 to a
minimum constant value Amin.

The original bat algorithm is illustrated in Algorithm 1,
where the population of virtual bats consists of NP real-
valued D-dimensional vectors representing solutions. In this
algorithm, bat behavior is captured in the fitness function
of the problem to be solved. It consists of the following
components: initialization (lines 2-4), generation of new so-
lutions by moving the virtual bats (lines 6-7), local search
(lines 8-11), and acceptance of the new solution with some
proximity (lines 12-15).

Algorithm 1 Original Bat Algorithm

1: Objective function f(xi), xi = (xi1, ..., xiD)T

2: Initialize the bat population xi and velocities vi for i =
1 . . .NP

3: Define pulse frequency Qi ∈ [Qmin, Qmax]
4: Initialize pulse rates ri and the loudness Ai
5: while (t < Tmax) // number of iterations
6: Generate new solutions by adjusting frequency, and
7: updating velocities and locations/solutions [Eq. 1 to 3]
8: if(rand(0, 1) > ri)
9: Select the best solution in the current population

10: Generate a local solution around the best solution
11: end if
12: if(rand(0, 1) < Ai and f(xi) < f(x))
13: Accept the new solutions
14: Increase ri and reduce Ai
15: end if
16: Rank the bats and find the current best
17: end while
18: Postprocess results and visualization

The movement of virtual bats obeys the following equa-
tions:

Q
(t)
i = Qmin + (Qmax −Qmin)N(0, 1), (1)

v
(t+1)
i = vti + (xti − x∗)Q

(t)
i , (2)

x
(t+1)
i = x

(t)
i + v

(t)
i . (3)

The local search part implements the kind of random walk
with direct exploitation according to the equation:

x(t) = x∗ + εA
(t)
i v

(t)
i , (4)

where N(0, 1) denotes the random generated number drawn
from interval [−1, 1], ε is the scaling factor, x∗ the current

best solution and A
(t)
i the loudness.

The loudness A
(t)
i and the rate of pulse emission r

(t)
i can

be changed during the search process. Naturally, the loud-
ness decreases and the rate of pulse emission increases when
a bat finds its prey. This characteristic can be formulated
in the bat algorithm with the following equations:

A
(t+1)
i = αA

(t)
i , r

(t)
i = r

(0)
i [1− exp(−γε)], (5)

where α and γ are constants.

2.2 Differential evolution
Differential evolution (DE) [3] is an evolutionary algo-

rithm appropriate for optimization that has been introduced
by Storn and Price in 1995 [13]. The DE supports a differ-
ential mutation, a differential crossover and a differential
selection. In particular, the differential mutation randomly
selects two solutions and adds a scaled difference between
these to the third solution. This mutation can be expressed
as follows:

u
(t)
i = x

(t)
r0 + F · (x(t)r1 − x

(t)
r2 ), for i = 1 . . .NP , (6)

where F ∈ [0.1, 1.0] denotes the scaling factor as a posi-
tive real number that scales the rate of modification while
r0, r1, r2 are randomly selected values in the interval 1 . . .NP .

Uniform crossover is employed as a differential crossover
by the DE. The trial vector is built out of parameter values
that have been copied from two different solutions. Mathe-
matically, this crossover can be expressed as follows:

zi,j =

{
u
(t)
i,j randj(0, 1) ≤ CR ∨ j = jrand,

w
(t)
i,j otherwise,

(7)

where CR ∈ [0.0, 1.0] controls the fraction of parameters
that are copied to the trial solution. Note, the relation
j = jrand assures that the trial vector is different from the
original solution Y (t).

Mathematically, a differential selection can be expressed
as follows:

w
(t+1)
i =

{
z
(t)
i if f(Z(t)) ≤ f(Y

(t)
i ),

w
(t)
i otherwise .

(8)

In a technical sense, crossover and mutation can be per-
formed in many ways in differential evolution. Therefore,
a specific notation was used to describe the variety of these
methods (also strategies) in general. For example, ’rand/1/bin’
denotes that the base vector is randomly selected, 1 vector
difference is added to it, and the number of modified param-
eters in the mutant vector follows a binomial distribution.

2.3 Random forest
The random forest is a machine learning method that is

regarded by ensemble classifiers [2]. The ensemble consists of
many decision trees. Each tree gives a classification and the
forest chooses those classification that is most often classi-
fied. This algorithm was developed by Leo Breiman [2]. His
ideas are also applicable to regression.

3. THE PROPOSED BAT ALGORITHM
The original bat algorithm implements two features: a lo-

cal search, where the current best solution is used to try to
make an improvement using the RWDE heuristic [12], and
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Table 1: Ensemble of DE-strategies
Strategy Expression

Best/1/Exp x
(t+1)
i,j = best

(t)
j + F · (x(t)r1,j − x

(t)
r2,j)

Rand/1/Exp x
(t+1)
i,j = x

(t)
r1,j + F · (x(t)r2,j − x

(t)
r3,j)

RandToBest/1/Exp x
(t+1)
i,j = x

(t)
i,j + F · (best(t)i − x

(t)
i,j ) + F · (x(t)r1,j − x

(t)
r2,j)

Best/2/Exp x
(t+1)
i,j = best

(t)
i + F · (x(t)r1,i + x

(t)
r2,i − x

(t)
r3,i − x

(t)
r4,i)

Rand/2/Exp x
(t+1)
i,j = x

(t)
r1,i + F · (x(t)r2,i + x

(t)
r3,i − x

(t)
r4,i − x

(t)
r5,i)

Best/1/Bin x
(t+1)
j,i = best

(t)
i + F · (x(t)r1,i − x

(t)
r2,i)

Rand/1/Bin x
(t+1)
j,i = x

(t)
r1,j + F · (x(t)r2,j − x

(t)
r3,j)

RandToBest/1/Bin x
(t+1)
j,i = x

(t)
i,j + F · (best(t)i − x

(t)
i,j ) + F · (x(t)r1,j − x

(t)
r2,j)

Best/2/Bin x
(t+1)
j,i = best

(t)
i + F · (x(t)r1,i + x

(t)
r2,i − x

(t)
r3,i − x

(t)
r4,i)

Rand/2/Bin x
(t+1)
j,i = x

(t)
r1,i + F · (x(t)r2,i + x

(t)
r3,i − x

(t)
r4,i − x

(t)
r5,i)

Algorithm 2 Modification in Hybrid Bat Algorithm with
Random Forest
1: if(rand(0, 1) > ri)
2: Select the best solution in the current population
3: Generate a test set using the 10 DE-strategies from the best

solution
4: Generate a valid set using the candidate solution
5: Apply random forest regression using 10 estimators
6: end if

the replacement of the original solution with the better can-
didate solution according to the predefined proximity (simi-
lar to simulated annealing [9]). In this study, the local search
part of the BA algorithm (i.e., lines 8-11 in Algorithm 1) was
taken into account. In fact, lines 8-11 in the original algo-
rithm are replaced with lines 1-6 from Algorithm 2.

As can be seen from Algorithm 2, HBARF defines an en-
semble of ten DE-strategies (Table 1) that creates ten dif-
ferent solution from the candidate solution, each obtained
with another strategy [10]. For the random forest algorithm,
these ten solutions represent the training set, while the can-
didate solution acts as a validation set. Based on these two
sets, the random forest regression is launched, which pre-
dicts the new candidate solution.

Note that the original BA and HBA algorithms were im-
plemented in the C++ programming language, while the
HBARF algorithm combines the implementation of the BA
in C++ together with the RF implementation in Python
using the scikit-learn python library [11].

4. EXPERIMENTS AND RESULTS
The goal of our experimental work was to show how the

hybridization of the original BA with an ensemble of DE-
strategies and random forest regression influences its perfor-
mance. Therefore, the original BA was compared with HBA
and HBARF. The algorithms were tested by optimizing the
suite of five well-known functions of dimension 10 (Table 2)
taken from existing literature [14]. The same suite was also
used by HBA in [6]. The task of this optimization is to find
the global optimum of each function. Note that all of the
functions have the global optimum at the value zero.

The BA parameters in the experiments were set as follows:

loudness A0 = 0.5, pulse rate r = 0.5, frequencies Q
(t)
i ∈

[0.0, 2.0], while the DE with the strategy ’rand/1/bin’ oper-
ates with the following parameters: F = 0.5, CR = 0.9. The
random forest regression has been run with 10 estimators.

All algorithms have been terminated after Tmax = 1, 000
generations. Population size has been set to 10 (i.e., num-
ber of fitness evaluations was 10,000 for all algorithms in the
experiments). All functions were optimized 25 times.

The results of the experiments are illustrated in Table 3,
where the best results according to the best, worst, mean,
median, and standard deviation values obtained by the algo-
rithms BA, HBA, and HBARF, when optimizing the func-
tions f1-f5 are denoted in bold.

From Table 3 it can be seen that both hybridized algo-
rithms improved the results of the BA. As can be seen from
Figure 1, where the Friedman’s non-parametric test was per-
formed, this improvement was significant. In this figure, two
algorithms are significantly different, if their confidence in-
tervals represented as lines do not overlap. On the other
hand, HBARF improved HBA. Comparing the results of
both hybridized algorithms with each other, it can be con-
cluded that the HBARF achieved the best results according
to the mean and standard deviation values, while the results
of HBA are more dissipated around a mean value.

BA

HBA

HBARF

 1  2  3  4

Average rank

Figure 1: Friedman’s non-parametric test

5. CONCLUSION
In this paper two novel ideas for hybridization and im-

proving the bat algorithm were presented. Experiments
showed that the random forest method might also be very
suitable for evolutionary computation and the swarm intel-
ligence world.

In the future we would like to apply random forest to pure
differential evolution and try to create an random forest on
ensemble of DE strategies. Moreover, new machine learn-
ing methods for using ensemble of DE strategies would be
explored in the future work (e.g., Extremely Randomized
Trees).
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Table 2: Test suite

f Function Definition Range

f1 Griewangk’s function F (~x) = −
∏n
i=1 cos

(
xi√
i

)
+
∑n
i=1

x2i
4000

+ 1 −600 ≤ xi ≤ 600

f2 Rosenbrock’s function F (~xi) =
∑n−1
i=1 100 (xi+1 − x2i )2 + (xi − 1)2 −15.00 ≤ xi ≤ 15.00

f3 Sphere function F (~xi) =
∑n
i=1 x

2
i −100.00 ≤ xi ≤ 100.00

f4 Rastrigin’s function F (~xi) = n ∗ 10 +
∑n
i=1(x2i − 10 cos(2πxi)) −15.00 ≤ xi ≤ 15.00

f5 Ackley’s function F (~x) =
∑n−1
i=1

(
20 + e− 20e

−0.2
√

0.5(x2i+1+x
2
i ) − e0.5(cos(2πxi+1)+cos(2πxi))

)
−32.00 ≤ xi ≤ 32.00

Table 3: The results of the experiments
Alg. D Value f1 f2 f3 f4 f5

BA 10

Best 3.29E+01 1.07E+04 5.33E+01 6.07E+01 1.37E+01
Worst 1.73E+02 1.58E+06 3.11E+02 5.57E+02 2.00E+01
Mean 8.30E+01 5.53E+05 1.44E+02 2.27E+02 1.75E+01

Median 3.91E+01 4.69E+05 6.44E+01 1.06E+02 1.68E+00
StDev 6.94E+01 4.71E+05 1.48E+02 2.17E+02 1.73E+01

HBA 10

Best 2.25E-09 6.34E-02 4.83E-09 5.12E+00 6.31E-04
Worst 3.97E-05 5.10E+02 2.89E-03 2.38E+01 2.00E+01
Mean 3.18E-06 6.22E+01 1.26E-04 1.55E+01 1.16E+01

Median 8.66E-06 1.15E+02 5.66E-04 4.46E+00 9.26E+00
StDev 1.14E-07 7.73E+00 1.66E-07 1.69E+01 1.78E+01

HBARF 10

Best 1.44E-11 5.00E-05 2.36E-06 3.09E-05 7.21E-04
Worst 6.35E-04 1.99E+00 5.90E-02 1.02E+01 3.53E-01
Mean 3.92E-05 2.64E-01 5.92E-03 5.92E-01 3.14E-02

Median 1.05E-06 1.58E-01 4.50E-04 1.07E-01 1.27E-02
StDev 1.25E-04 5.44E-01 1.22E-02 2.00E+00 6.76E-02
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