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ABSTRACT This paper delineates the contemporary landscape, challenges, and prospective developments
in human-centred artificial intelligence (AI) within the ambit of smart farming, a pivotal element of the
emergent Agriculture 5.0, supplanting Agriculture 4.0. Analogous to Industry 4.0, agriculture has witnessed
a trend towards comprehensive automation, oftenmarginalizing human involvement. However, this approach
has encountered limitations in agricultural contexts for various reasons. While AI’s capacity to assume
human tasks is acknowledged, the inclusion of human expertise and experiential knowledge (human-in-
the-loop) often proves indispensable, corroborated by the Moravec’s Paradox: tasks simple for humans
are complex for AI. Furthermore, social, ethical, and legal imperatives necessitate human oversight of AI,
a stance strongly reflected in the European Union’s regulatory framework. Consequently, this paper explores
the advancements in human-centred AI focusing on their application in agricultural processes. These
technological strides aim to enhance crop yields, minimize labor and resource wastage, and optimize the
farm-to-consumer supply chain. The potential of AI to augment human decision-making, thereby fostering
a sustainable, efficient, and resilient agri-food sector, is a focal point of this discussion - motivated by the
current worldwide extreme weather events. Finally, a framework for Agriculture 5.0 is presented, which
balances technological prowess with the needs, capabilities, and contexts of human stakeholders. Such an
approach, emphasizing accessible, intuitive AI systems that meaningfully complement human activities,
is crucial for the successful realization of future Agriculture 5.0.

INDEX TERMS Human-centered AI, smart farming, agriculture 5.0, digital transformation, artificial
intelligence.

I. INTRODUCTION
In the summer of 2023, global agriculture faced substantial
challenges due to a series of unexpected extreme weather
events. Notably, in July 2023, Europe experienced a con-
fluence of extreme weather phenomena. Severe winds, often
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accompanied by hail, caused widespread damage [1]. These
conditions were further exacerbated by significant flooding
events [2], [3] associated with catastrophic landslides. The
concatenation and the cumulative impact of these events have
significantly weakened the agricultural sector: crops and live-
stock have been severely damaged or destroyed, agricultural
infrastructure has been impaired and fields and water sources
have been contaminated. This sequence of events highlights
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the increasing vulnerability of agriculture to climate-related
extremes and necessitates improved resilience and adaptation
strategies in the future. As a result, the improvement of early
warning systems and the development of precise weather
forecasting methods have sparked global debate [4], [5].
Future projections indicate even an increase in extreme

weather conditions on a global scale whichwill have dramatic
effects on global agriculture [6], [7].

In light of such devastating weather events of summer
2023, there has been an intensified discourse on the urgent
need to modernize agriculture, making it more resilient to the
capricious and often harshwhims of nature. This conversation
gains critical relevance against the backdrop of global warm-
ing, a phenomenon that is not only altering weather patterns
but also escalating their severity and unpredictability. The
extreme weather conditions, which have wrought widespread
economic havoc at both regional and global scales, serve
as a stark reminder of our growing vulnerability [8].
Consequently, steps to modernize agriculture to make it more
resilient to such events are ultimately necessary.

The call for modernization encompasses a comprehensive
overhaul of agricultural practices, technologies, and policies.
It is not merely a question of adapting to change, but of
proactively innovating to anticipate and withstand future
environmental disturbances [9], [10]. This includes the
integration of advanced technologies such as Artificial
Intelligence (AI) driven predictive models for weather and
crop growth and development, the adoption of sustainable
farming practices that enhance biodiversity and soil health,
and the implementation of robust infrastructural measures to
mitigate the impact of extreme weather events.

Now is the moment to transition from merely discussing
smart farming to actively advocating for Agriculture 5.0. This
endeavor begins with understanding Industry 5.0, a well-
established concept that forms the foundation of our work.
Industry 5.0, also known as ‘‘human-centered industry’’,
is the next phase in the evolution of manufacturing and
production processes [11], [12], [13], [14]. This is in
contrast to Industry 4.0, which emerged with the integration
of advanced digital and communication technologies into
manufacturing and industrial operations and where the
primary focus was on total automation, without human
intervention [15]. It has already been argued in Industry
4.0 that in all cases of future production management, it is
vital that humans have oversight of critical information flows
and remain an active participant [16]. Industry 5.0 goes
one step further and emphasizes collaboration between
humans and advanced technologies [17]. This combination
of the ‘‘best of both worlds’’ shall leverage automation, AI,
and robotics while empowering human creativity, problem-
solving, and adaptability [18]. This aims to create a more
inclusive and flexible work environment where humans and
machines work together seamlessly, optimizing productivity
and efficiency. Industry 5.0 fosters the development of smart
factories that use interconnected systems, IoT (Internet of
Things) devices based on smart sensors and actuators, and

real-time data analytics to enable responsive production
operations. Furthermore, Industry 5.0 embraces the concept
of mass customization, allowing businesses to cater to
individual customer needs at scale.

Alongside this trend towards Industry 5.0, there is also a
growing trend towards Agriculture 5.0. The precursor, Agri-
culture 4.0, already included the use of advanced technologies
such as IoT devices, sensors [19], drones [20], robots,
numerous artificial intelligence methods and data analysis
techniques to collect and evaluate real-time information
about animals, crops, plants, soils and the environment as
a whole [21], [22]. As a result, these technologies help
farmers make data-driven decisions to optimize resource
use and apply more precise and sustainable farming and
cultivation methods, ultimately leading to a more efficient
and technologically advanced agricultural industry. The
success of Agriculture 4.0 will be measured by the transition
to Agriculture 5.0, which is the next logical step to make the
entire agricultural system more sustainable and regenerative
and to eliminate the disadvantages of Agriculture 4.0 (e.g.
high initial costs, lack of skilled labor, security, dependency,
digital divide, energy consumption, lack of network coverage,
etc.). This paradigm shift from a purely technology-centric
approach embodies the synergy between technology and
people. By embracing human-centric AI, we are harnessing
the power of technology not only to innovate, but also
to complement and enhance human capabilities to ensure
that advances are not only groundbreaking, but also ethical
and beneficial to society. This synergy is the cornerstone
of sustainable and responsible progress, where technology
serves as an extension of human will and creativity, leading to
more intuitive, effective and inclusive solutions for a digital
transformation.

However, this digital transformation in future smart
farming requires a human-centered AI approach that incor-
porates sociological, ethical, and legal issues of Artificial
Intelligence [23] - with the goal of augmenting rather than
replace human intelligence.

II. HUMAN-CENTERED AI (HCAI)
The term AI to describe one of the oldest fields in computer
science has now established itself as a comprehensive
umbrella term for a disruptive new generation of information
technologies that have penetrated today virtually all areas of
life [24].
From the very beginning, the original goal of AI was

to develop machines that are capable of performing tasks
that require intelligence in humans, such as learning, logical
thinking, problem solving, language comprehension, etc. The
foundations for AI were laid in the 1940s and 1950s by
pioneers such as Alan Turing, who proposed the Turing test
as a criterion for intelligence and developed the concept
of a universal machine. The term ‘‘artificial intelligence’’
itself was first coined by John McCarthy at the Dartmouth
Conference in 1956 and marked the official birth of the
discipline.
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In the 1950s and 1960s, early AI research focused on
problem-solving and symbolic methods and led to the
development of the first AI programs. Researchers were
overly optimistic about the future, as demonstrated by
programs such as the Logic Theorist and the General Problem
Solver, which could solve algebra problems and prove
theorems. However, in the 1970s and 1980s, the limitations
of early AI became apparent, leading to a period known
as the ‘‘AI winter’’, in which funding and, unfortunately,
interest in large-scale AI research declined. This period led to
a re-evaluation and a shift towards more robust and scalable
approaches, including the development of simpler machine
learning algorithms. The limitations were limited computing
power, limited storage space and the associated lack of big
data.

As computing power increased and new algorithms were
developed in the 1980s and 1990s, statistical machine
learning emerged as a dominant force in AI. The concept of
neural networks, which had been around since the 1940s but
occupied a niche position, gained popularity as researchers
recognized its potential. The rapid spread of the World
Wide Web on the infrastructure of the Internet and the
availability of large amounts of data in the 2000s led to
significant advances in AI. Machine learning algorithms
improved dramatically with access to big data, leading to
breakthroughs in many areas, including natural language
processing and computer vision.

The development of deep learning in the 2010s has led
to remarkable advances and impressive successes where
such systems have matched and even surpassed human
performance in tasks such as image recognition, strategic
gaming and complex problem solving.

The successes of statistical machine learning became
widely visible with the emergence of large language models,
which play a crucial role in AI’s current surge in popularity.
Large language models such as GPT (Generative Pre-
trained Transformer) and BERT (Bidirectional Encoder
Representations from Transformers) show unprecedented
processing power of human language. These models, trained
with huge amounts of text data from the Internet, have
learned to generate coherent and contextual text, translate
languages, answer questions and even create content that is
often indistinguishable from that created by humans. Their
ability to perform a wide range of language tasks with high
accuracy has led to their widespread use in various industries,
from customer service chatbots to virtual assistants and
advanced research tools.

The success of these models has not only demonstrated
the potential of statistical machine learning, but has also
contributed significantly to the popularity of AI. They have
made AI more accessible and understandable to the general
public and demonstrated its potential to support, augment
and in some cases automate tasks traditionally performed by
humans. This has led to an increase in investment, research
and interest in AI across all sectors, which has accelerated
the pace of innovation and the range of applications of AI.

As these models continue to evolve and improve, they are
expected to drive further advances and interest in AI, shaping
the future of the technology and its role in society.

AI has thus currently become an integral part of many
technologies and services. Throughout its history, the goal of
AI has essentially remained the same: to develop machines
capable of intelligent behavior. However, the approaches
and technologies have changed and evolved, leading to the
sophisticated and powerful AI systemswe see today. The field
is certainly still growing and research will continue to make
AI more general and explainable and to bring it in line with
human values - this is the starting point for the relatively new
Human-Centered AI.

Three factors are particularly important to emphasize here:
(i) The most powerful statistical learning methods of today
are often so-called ‘‘black boxes’’ that make it difficult,
indeed practically impossible, to understand, interpret and
explain why a certain result was achieved. (ii) These methods
lack robustness; even the smallest disturbances in the input
data can have dramatic effects on the output and lead
to completely different results. This is of importance in
practically all critical areas where we suffer from poor data
quality, i.e. in the real world we do not have the i.i.d. data
(independent, identically distributed data) that we ideally
have available under lab conditions. (iii) The issues from
(i)+(ii) result in a lack of trust in AI. In vital areas such
as agriculture, it is all about trust. It is about user trust in
AI in general, and its methods and its results in particular.
Explainability is one step in achieving trust, and robustness
is the second. Both together - explainability and robustness -
promote reliability and trust in the results and ultimately also
ensure that humans remain in control [25], [26].

Some developers would probably be relatively indifferent
to this and of course could easily be ignored in practice.
However, there are ethical, social and, above all, legal
requirements worldwide under way that are set by individual
countries and entire communities of countries, such as the
European Union.

Human-Centered AI (HCAI) is a relatively new approach
to provide human control over AI technologies and to alignAI
with human values, ethical principles, and legal requirements
to ensure that AI is reliable, safe and trustworthy [27], [28].
HCAI is rooted in the principle that technology should

amplify human potential, HCAI asserts that AI systems
should be transparent, intuitive, and adaptable to individual
user requirements. This dovetails neatly with the principles
of Explainable AI (XAI), which emphasizes the importance
of making AI decisions understandable and interpretable to
humans. Without this clarity, users may find it challenging
to trust or even appropriately utilize AI solutions. From a
methodological standpoint, creating truly human-centered
AI involves several challenges. Designing these systems
requires a deep understanding of human cognition, behavior,
and domain-specific expertise. A genuine ‘‘human-in-the-
loop’’ approach ensures that AI systems are not developed
in isolation but are iteratively refined based on continuous
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human feedback. This is not just about correcting errors but
about aligning the system’s operations more closely with
human values and needs. Such an approach is crucial to
ensure that AI does not supplant human expertise. Instead,
the vision is for AI to act as a collaborator, augmenting and
enhancing human capabilities. In this light, AI becomes a
powerful tool in the hands of domain experts, amplifying
their skills and insights, rather than an entity that renders their
expertise obsolete.

While this is currently widely discussed, there is to date no
single universally accepted framework for HCAI. However,
there are general principles and methodologies that form
the foundation of what might become a framework for
HCAI. Here is an outline based on general principles and
considerations:

1) Human-Centered Design:
• Understand and address user needs and contexts.
• Involve users throughout the development process.
• Prioritize user experience and intuitive interfaces.

2) Transparency & Explainability:
• AI should provide clarity on its decision-making
process.

• Use Explainable AI (XAI) techniques to make
algorithms interpretable.

• Ensure users can understand and trust AI outputs.
3) Empowerment & Augmentation:

• Design AI to amplify human capabilities.
• AI should support, not replace, human tasks.
• Prioritize systems that enhance human creativity.

4) Ethical Considerations & Fairness:
• Prioritize user privacy and data protection.
• Minimize and address biases in AI models.
• Ensure AI solutions are equitable.

5) Adaptability & Flexibility:
• AI should adapt to individual user requirements.
• Offer customization options.
• Regularly update AI models based on feedback.

6) Safety & Reliability:
• Ensure AI operates safely in all environments.
• Prioritize robustness against adversarial attacks.
• Implement fail-safe mechanisms.

7) Continuous Learning & Iteration:
• Implement mechanisms for AI to evolve.
• Use a ‘‘human-in-the-loop’’ approach.
• Regularly refine AI systems based on perfor-
mance.

8) Collaboration & Interdisciplinary Approach:
• Combine insights from AI, cognitive science, and
other domains.

• Promote collaboration between AI experts and
domain experts.

• Promote collaboration between developers and end
users.

III. BACK TO THE FUTURE: FROM INDUSTRY 1.0 TO 5.0
In ancient times, goods were primarily crafted by hand
for personal use, deeply intertwined with the agrarian

TABLE 1. Evolution of industrial revolutions during the history.

lifestyle. By the Middle Ages, basic manufacturing processes
began to emerge in small workshops, utilizing rudimentary
tools and equipment [29]. This period marked a transition
from subsistence farming to commercial production, with
individuals who once worked the land starting to receive
wages for their labor in these nascent industries. The
20th century heralded a significant shift with the advent
of modern technologies, leading to the establishment of
the smart manufacturing industry and profoundly altering
production processes. In recent decades, ‘‘smart factories’’
[30], [31] have come to the forefront, where the majority
of tasks are undertaken by intelligent machines capable of
making decisions based on data analytics, communication
technologies, and, most notably, the Internet of Things (IoT).
This revolution has not only transformed how goods are
produced but also redefined the role of the human worker
within these advanced industrial settings.

In this new era, the manufacturing industry is envisioned as
a collaborative synergy between humans and machines, each
complementing the other’s capabilities in decision-making
processes. This collaboration is particularly significant for
communities that recognize the foundational role of farming,
as it underscores the evolution from manual, agrarian-based
work to sophisticated, technology-driven production while
still acknowledging the enduring importance of agriculture.
Historically, these shifts from a handcraft and farming
economy to the modern manufacturing industry we recognize
today have often been characterized as revolutions, marking
substantial transformations in societal production, work, and
lifestyle patterns [32] (Table 1).

The concept of a ‘‘revolution’’ denotes a profound and
radical transformation in historical contexts. Within the
engineering domain, the term ‘‘industrial revolution’’ is
particularly associated with the advent of groundbreaking
technologies that have dramatically reshaped economic
systems and social structures. The initial shift began approxi-
mately 10,000 years ago with the agrarian revolution, marked
by the domestication of animals and the cultivation of
crops for both sustenance and commerce. Subsequently,
a succession of Industrial Revolutions (IR) unfolded, starting
in the latter half of the 18th century.

The first Industrial Revolution (IR1) was ignited by the
invention of steam power, which catalyzed mechanization
in production processes and the utilization of water power.
The second Industrial Revolution (IR2), commencing in the
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late 19th century, was characterized by mass production
fueled by electricity and the introduction of assembly lines
in factories. This era significantly influenced urbanization
as individuals migrated from rural areas to cities in search
of employment and new lifestyles. The onset of the third
Industrial Revolution (IR3) was signified by the emergence
of mainframe computers in the 1960s, personal computers in
the 1970s, and the internet in the 1990s. Known as the digital
revolution, this period saw the introduction of automation in
manufacturing, with technologies such as Numerical Control
(NC), Computer Numerical Control (CNC), and Distributed
Numerical Control (DNC) becoming prevalent.

The term ‘‘Industry 4.0’’ was first introduced at the
Hannover Fair in 2011, marking the beginning of the fourth
industrial revolution (IR4). This revolution, primarily driven
by the German government’s high-tech strategy, introduced
the concept of ‘‘smart factories’’ where virtual and physi-
cal manufacturing systems (also known as Cyber-Physical
Systems or CPS) collaborate globally in an efficient manner.
Initially, IR4 focused predominantly on automation, often
sidelining the role of human operators. The enormous success
in AI fueled the automation.

After the enthusiastic expectations of doing everything
automatically, due to the enormous success in AI [33],
it was sobering to realise that tasks that are difficult for
humans are often easy for AI, but that tasks that are easy for
humans are difficult for AI. Moravec’s Paradox [34] observes
that contrary to traditional assumptions, high-level reasoning
requires very little computation, but low-level sensorimotor
skills require enormous computational resources. The para-
dox highlights that tasks humans find complex are easy for
machines, and vice versa [35]. In the context of Industry 4.0,
this paradox is particularly relevant as it underscores the chal-
lenges in automating tasks that require dexterity and percep-
tion, skills that humans typically find effortless. This had sig-
nificant implications for the design and integration of robotics
and AI in manufacturing environments, where the goal is to
complement human labor with machines that can perform
both simple repetitive tasks and complex problem-solving.
The appreciation that humans excel at specific tasks and the
acknowledgment of social, ethical, and legal imperatives for
human involvement led the European Commission in 2021 to
introduce ‘‘Industry 5.0.’’ This new paradigm re-emphasizes
the integration of humans back into the production process,
aligning perfectly with the objectives of human-centered
AI. Industry 5.0 doesn’t just seek to automate but to syn-
ergize human intelligence and creativity with technological
advancements, thereby fostering amore sustainable, efficient,
and ethically responsible industrial landscape, however let us
first describe the main concepts of Industry 4.0, as we need
this for our journey towards Industry 5.0.

A. CONCEPTS OF INDUSTRY 4.0
In traditional macroeconomics, an industry is a branch of
an economy that produces a closely related set of raw

materials, goods, or services [36]. However, the paradigm
shifted by an advanced digitalization and automation within
classical factories, Internet of Things and Services (also
called Industrial IoT (IIoT)), and modern Information and
Communication Technologies (ICT) to the concept of
‘‘smart factories’’ in Industry 4.0, where costumer demands
control smart machines [37]. In this sense, the Industry
4.0 transforms the traditional machine manufacturing to
digital manufacturing [38]. The basis of Industry 4.0 presents
embedded autonomous systems connected to the wireless
internet that caused a convergence of the physical production
world with the virtual (also cyber) world. The convergence
of these technologies resulted in emerging the CPSs capable
of integration network resources, objects and people into
smart factories [37]. This integration led to IR4. Although
the common definition of IR4 does not exist, many authors
defined the concept more or less precisely. In the study,
we refers to the definition found in technical report by
Fay et al. [39], which say the following: ‘‘IR4 refers to the
intelligent networking of machines and processes for the
industry based on CPSs capable of achieving intelligent
control using embedded networked systems.’’ The core
concepts include self-organization, adaptation to human
needs and corporate social responsibility [40]

Smart factory is category of manufacturing that is dis-
tinguished from traditional approaches by computer control
and high level of an adaptivity, scalability, reconfigurability,
and flexibility [41], allowing the smart factories to survive
inside a high dynamic and global market. Mainly, the
adaptivity refers to variety of products, scalability to various
production parameter settings, reconfiguration to a topology
of smart machines within the global network, and flexibility
to process organization including corporative strategy, work
organization and human-resource management. The goal
of the smart factories is to produce smart products (i.e.,
materials, goods, or services) quickly and in small batches,
where many work pieces can be produced cost-effectively
in much smaller tasks. Smart products know the details of
how they were manufactured and how they are intended to
be used [37]. On the other hand, the producing the smart
products demands transformation from traditional methods
to advanced technologies. Typically, the transformation
obeys principle ‘‘plug-and-produce’’ that is the capability
of a production system to automatically identify a new
or modified component and to integrate it correctly into
the running production process without manual efforts and
changes.

Modern business bases on global network that incorporate
the smart machinery, warehousing systems and production
facilities in the shape of CPSs [37]. The goal of CPSs
are to merge physical production with the virtual digital
world. In line with this, their production facilities are capable
of independent controlling the smart machines, exchanging
information between human and the other machines, and
triggering actions. Indeed, the production facilities of the
CPS corresponds to the definition of intelligent agents [42]
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equipped with multiple sensors, actors, and autonomous
systems as decision-making components. According to this
definition, the decision making component is capable of
exchanging information (i.e., social component of intelligent
robots), triggering actions (i.e., the result of decisionmaking),
and independent control of its environment (i.e., smart
production machine).

Smart factories work in environments that are sensitive to
external unpredictable events aswell as to internal complexity
(i.e., multifunction, autonomy), which usually results in more
abnormal events [43]. The response to this issue presents a
self-organization that taken inspiration for the production in
such factories from the nature.

New systems in distribution and procurement refer to
new role that the distribution and procurement have in the
smart factories. The distribution of products from the smart
manufacturing is delivered to the end user via distribution
channels (e.g., direct and indirect), where, a selection for
the proper channel depends in individual’s preferences.
The concept is defined as applying internet technologies
for facilitating procurement procedures, like ordering and
sourcing tasks [44].

While a characteristic of the Industry 2.0 was mass produc-
tion (production of the huge number of the same products),
the smart factories support mass customization (production
of small batched products quickly and efficiently). The mass
customization offers the customers the ability (in the sense
of services) of selecting among variety of features and
accessories to share a final customized assembly combination
of a basic product [45].

As a result, the products produced by mass customization
are more flexible, while the customers have possibility to
adapt their products according to them personal needs. This
means that the customers have the leverage to affect the
production in smart factories directly, while the results of
such production is whole personalized. As a result, the
concept of mass personalization has emerged that allows
smart factories to mass produce personalized products
in dynamic quantities, where the cost of production is
comparable to the mass production [46].

The aim of Corporate Social Responsibility (CSR) is to
promote sustainable development. The CSR is focused on
three main issues of the modern business: the environment,
the society, and the economy. It needs to understand chal-
lenges of the modern business and to indicate the risks that
the proposed solutions have for society. The CSD practices
have the positive impact on society, and, thus, they improve
the competitiveness and sustainability for companies [47].
Being social responsible means more productivity, since an
improvement in conditions for workers also optimize their
effectiveness [48].

The concepts of Industry 4.0 define theoretical foun-
dations, on which this is built. However, the concrete
implementation depends on the way how they are conveyed
in practice. In order to discover how the general concepts
are implemented in practice, a short survey was made in this

TABLE 2. Industry 4.0 concepts and their implementations in practice.

study that indicates, in which directions this vibrant domain
has promoted (Table 2).

Industry 4.0 suffers from a lack of a general framework
of smart factory systems guiding the academic research
and industrial implementation. Many specific frameworks
have been developed in special domains, including one by
Zheng et al. [49]. This framework is represented as a 2D
layered structure connecting the physical world with the
virtual ones. It assumes that the physical world consists of
five layers, representing the following production processes:
smart design, smart monitoring, smart machining, smart
control, and smart scheduling. The virtual world comprises
the four layers, representing digital data generated by the
production processes and include sensors and actuators, data
collection, data analysis, and decision making.

Typically, Cyber-Physical Production Systems (CPPSs)
represents a materialization of the general concept of CPS in
the smart manufacturing environment [55]. CPPSs comprise
of smart machines, warehousing systems, and production
facilities depending on their role inside the smart factory.
For instance, the facilities of the CPPS in the textile smart
manufacturing is distinguished in the CPPS in automobile
smart manufacturing. Irrespective of the differences between
them, the CPPS in one application domain may also
communicate with the CPPS from an other application
domain.

The concept of self-organization is taken from nature and
has inspired designers of smart factories by constructing the
so-called Self-Organized Manufacturing Systems (SOMS)
to deal with the abnormal events automatically and spon-
taneously without any external control [56]. Recently, agile
system modeling and control architecture demands that the
traditional centralized and hierarchical control in SOMS
is replaced by the decentralized control in Self-Organizing
Manufacturing Networks (SOMN) capable of joining multi-
ple SOMS into a whole. Consequently, more decentralized
paradigms can be applied in SOMN, as for instance: Multi-
Agent Systems (MAS) [42], Holonic Manufacturing Systems
(HMS), or Bionic Manufacturing Systems (BMS).

Procurement 4.0 represents one of several proposed
solutions for the new distribution/procurement system devel-
opment in Industry 4.0. It transforms supply chains to smarter
systems, which uses digital technologies for purchasing and
selling in order to save time and money [51]. Suppliers in
smart factories are typically connected with the ordering
companies by some kind of Electronic Data Interchange
(EDI) systems. In this case, the smart factory production
system is capable to automatically generate an order to be
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transmitted to the specific supplier, when this discovers that
a certain material is needed.

The concept of new product/service system development
demands changes in a smart factory production in the sense of
so-called Product-Service Systems (PSS). The PSS integrates
smart products and customer services, and thus, allows
a basic product to be redesigned using customization by
costumers [57]. In this manner, the customer is integrated
into the PPS development on the one hand, while the PPS
operations require skilled workers for controlling them on
the other [58]. The readers are invited to look the survey of
Annarelli et al. [52] for obtaining more information about the
subject.

The concept of adaptation to user needs leads nor-
mally to a concept of mass personalization. In paper of
Aheleroff et al. [53], the authors have proposed a Digital
Twin (DT) technology for solving the problem in smart facto-
ries. The factories supporting themass pesonalization are also
known under the name Mass Personalized Manufacturing
(MPM). The advantages of the DT is that this technology
is capable to suitable fill the gap between thy physical and
virtual world, and to provide insights for meeting mass
personalization during the product development and later
during the whole product life cycle.

The implementations of Corporate Social Responsibility
(CSR) have evolved also in generations from CSR 1.0 to
CSR 4.0, where the focus of practitioners has changed
from generation to generation [54]. While the practitioners
in CSR 1.0 perceived the CSR as a philanthropic activity
(making goods that help others or society as whole), their
focus in CSR 2.0 was to promote these activities through
better marketing and sharing values serving a healthy society.
Recently, the focus of CSR 4.0 is ‘‘a social good’’ that
benefits the largest number of people, like: clean air, clean
water, healthcare and literacy.

CSR 4.0 encompasses many studies (also CSR practices),
in which an influence of introducing the concept in the
companies has on their economy, society, and ecology. Based
on the CSR practices, Govindan [54] developed a theoretical
CSR framework being of general nature that connects the
practical results with the theory of social goods.

In early day of Industry 4.0, the concept was referred only
to manufacturing initiative. Nowadays, the initiative moved
to almost all domains of human activities. As a result, the
Industry 4.0 is present today in smart transportation and
logistics, smart buildings, oil and gases, smart healthcare,
smart cities, and smart agriculture. These concepts are only
a blueprint for how the Industry 4.0 should be designed.
The implementation of these concept in practice requires
key enabling technologies that are discussed in the next
subsection.

B. KEY ENABLING TECHNOLOGIES OF INDUSTRY 4.0
Industry 4.0 transforms production in the sense of joining
the isolated cells together as a fully integrated, automated

and optimized production flow [59]. It enables the greater
efficiency on the one hand, affects relationships among sup-
pliers, producers, and customers as well as the relationships
between man and machines on the other. Indeed, the goal of
Industry 4.0 is building smart machines that can predict and
make intelligent/smart decisions using modern information
and communication technologies [13]. In line with this, the
key enabling technologies (also pillars) of Industry 4.0 serve
as the implementation aid that include [60]:

• big data and analytics,
• autonomous robots,
• simulation,
• horizontal and vertical integration,
• IIoT,
• cybersecurity,
• cloud computing,
• additive manufacturing (robotics, 3D-printing),
• augmented reality.
In the landscape of Industry 4.0, data generation is an

integral part of the production process. This data is collected
and stored in intricate collections known as big data [61].
Within numerous organizations, these datasets become the
backbone of decision-making processes, shaping and driving
company strategies. Given the voluminous nature of big data,
sophisticated analytical tools are essential for processing
and extracting meaningful insights. These tools are adept
at uncovering customer preferences, discerning correlations
across disparate data sets, and revealing underlying trends.
Moreover, these analytical capabilities extend to predictive
error detection, allowing companies to preemptively address
potential issues, thereby mitigating risks and preventing
damage. This proactive approach not only enhances oper-
ational efficiency in production and marketing but also
refines customer engagement strategies. By leveraging these
insights, companies can gain a competitive edge, optimizing
their operations and aligning more closely with customer
needs and market dynamics. In essence, big data analytics
serves as a pivotal enabler in Industry 4.0, transforming raw
data into strategic assets that drive innovation, efficiency,
and market responsiveness. Another important aspects is
in robotics. In modern companies, robots have replaced
humans by dealing with simple, but repetitive, tedious, and
dangerous. Nowadays, the coinage ‘‘cobotics’’ is used to
join words ‘‘collaborative’’ and ‘‘robotics’’, with which the
characteristics of these are indicated. The cobots are even
able to learn from human beings to perform various complex
and challenging tasks [62]. Introducing autonomous robots in
manufacturing process results in better employee safety and
satisfaction, increased productivity, and higher profitability
for company. Some robots support also mobility. However,
the mobility is a challenging aspect in manufacturing that
needs incorporation of intelligent navigation solutions.

According to definition of Leong et al. [62], a simulation
approximately imitates the operations of a process or
system. In Industry 4.0, it essentially reduces unnecessary
waste in time and resources, and increases efficiency in
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manufacturing. It role in the design stage of product evolution
is very important, because all changes to product can be
eliminated virtually on computer, before the product comes
into the real production [63]. This means that the simulation
represents the strong modelling and evaluation tool for
analyzing complex systems. It serves also for establishing
the proof of concepts, before the real system is built.
Moreover, different system designs can be simulated in
order to determine the most optimized one. Furthermore,
the simulation model can be used for prediction of system
performance. Finally, the simulation optimization helps
designers to find the optimal design of the physical system
based on simulation model in digital computer.

Systems in Industry 4.0 can be integrated in two ways,
i.e., horizontally and vertically. The horizontal integration
refers to a connection network between CPSs laying on the
same level of manufacturing. It allows to connect multiple
production facilities across the whole enterprise as well as the
production facilities in the other organization. The horizontal
integration can capture the entire supply chains, more
precisely, the upstream supply and logistic chains as demand
by production process, and the downstream chain along
delivery of product to market. The vertical integration refers
to a connection network that connects organization structures
at different levels of the enterprise hierarchy usually using
the different communication protocols. Typically, the organi-
zation structures within enterprises consist of the following
departments: production, research and development, quality
assurance, information technology, sales and marketing, and
human resources. The vertical integration is connected with
tactical and strategical decision making, and enables the
cross-company universal data integration.

IoT refers to an ecosystem of devices, machines and
systems that are connected to the Internet, equipped with
sensors and actuators, capable to function separately and
to communicate with each other [64]. Industrial IoT (IIoT)
represents a robust version of the traditional IoT that is
embedded in an industrial environment. The goal of IIoT is
to enhance manufacturing processes by using smart sensors
and actuators. Connected together in the same network,
they form the whole system for collecting, exchanging and
analyzing data. In line with this, the IIoT systems typical
consists of three components: (1) intelligent device for
storing, collecting and communicating data, (2) networking
infrastructure, and (3) data collection and analytical system
for analyzing business information. The main challenge of
IIoT is suffering for a lack of standardized communication
protocols that can relieve different producers of IIoT devices
to be connected in the same network easily and secure [65].
With the expansion of the internet, especially increasing

the number of computer systems and communication devices,
has resulted in increasing malicious activities of attackers on
these networks, like unauthorized access, network attacks,
data corruptions, damage, etc. As a consequence, the
cybersecurity has emerged, which purpose is safeguarding
of data by maintaining the performance of systems [62].

The main challenge of the cybersecurity is how to ensure
data integrity in conditions of increasing data density,
information and operational technology fusion. Thus, the
users of IIoT are affected with these problems either directly
or indirectly, where the indirect affect refers to the malicious
attacks, like system crashes, data leaks, data corruptions,
and denial of services by the systems, that represent treats
in the sense of immense financial losses by companies.
In general, the cyber defence of the IIoT is divided into
four levels: (1) perception,(2) networking, (3) service, and
(4) application layers. In order to ensure a complete security,
the cybersecurity needs to offer the solutions for each of these
layers.

Cloud computing enable accessing data using the internet
from anywhere. This means that the traditional computing
based on local computer systems connected into local
networks are replaced with internet computing, where com-
putational resources, like databases, data storage, processors,
servers, and even software are accessible virtual through
internet. The data are easily accessed by users on remote
servers by moving these resources on the Internet, while
the various software solutions allow them to manipulate and
process data securely. The goal of the cloud computing is to
help remotely located people to work together. In this way,
the companies get access to virtually infinite processing and
storage capabilities cost-effectively by using the pay-per-use
payment model, where costs for ICT depends on resource
usage.

Additive manufacturing is a part of mass production and
mass personalization concepts of Industry 4.0. This process
is focused on joining more parts together in forming the
product and fundamentally change the traditional production
process. Usually, it is used in mass customization, where only
small batches are produced at once. Normally, this kind of
production requires a complex but lightweight design [62].
The growth of the production lies also in increasing of
personalization of products as well as reducing time for
delivering them to customers. As opposed to traditional mass
production, the additive manufacturing exploits an advanced
technology for manufacturing accurate and complex smart
products quickly and efficiently.

Augmented reality enhances the user’s interactive expe-
rience of the real-world environment with visual objects
generated by computer based on acquired information from
environment [62]. In Industry 4.0, it is most often used in
the sense of Human Robot Collaboration (HRC), where the
communication between human and robot is enhanced using
innovative interfaces. This technology can be successfully
applied for maintenance, repair, and assembly tasks in
manufacturing. However, these tasks request a set of virtual
assets capable of acquiring data, on which basis they can give
aids, indication or suggestion to the user on the graphical
assets, and thus guides user’s decision making process
substantially. The augmented reality usually guides tasks that
are dangerous in nature, but can also be applied for product
quality control.
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C. HUMAN-OUT-OF-THE-LOOP IN INDUSTRY 4.0
Interestingly, Industry 4.0 is founded on manufacturing
environment consisting of: smart products, intelligence,
Machine to Machine (M2M) communication, and connection
network. The focus of this industry is devoted to intelligent
robots, autonomous systems, problem solving without human
involvement, and communication between machines. The
smart machines become more independent in deciding what
to do in a specific situation without any human intervention.
Also tasks, that are delegated to them, are more and more
complex.

The factors in Industry 4.0 are designated with a set of
adjectives, as follows: smart, flexible, adaptive, autonomous,
unmanned, and sensor-based without a human in a production
loop. It almost appears that the Industry 4.0 has forgotten
the presence of humans. Indeed, this system can be observed
as machine-centric, and, therefore, the concept could be
considered as ‘‘human-out-of-loop’’ [66].

D. CONCEPTS OF INDUSTRY 5.0
The Industry 5.0 paradigm, proposed in 2021 sets new
relations between industry and society. It is not just a
continuation of Industry 4.0 and not an alternative to it,
because it complements and extends features of the Industry
4.0 by placing the industry into the future society (i.e., Society
5.0). In line with this, three concepts of Industry 5.0 are
formulated as follows [11]:

• human-centric,
• resilient,
• sustainable.
Human-centric industry means that human needs and

interests represent a hearth of the production process [67].
In Industry 5.0, the production process needs to be adapted
to the needs of workers in the sense of guiding and
training them. The basis of the industry becomes the
human-centered technologies that do not determine social
development as is the case with technologies appearing in
Industry 4.0. The human-centric technologies of Industry
5.0 tries to develop workers’ abilities, and take care
of their safer and creates a more satisfying production
environment. Workers’ fundamental rights, like privacy,
anatomy, and human dignity, are preserved by these new
technologies.

Industry 5.0 is characterized by: (1) robustness in industrial
production, (2) smooth recovering after disruptions, and (3)
providing the critical infrastructure in crisis times.

Industry 5.0 offers a solution for a Sustainable industry
considering that natural resources on the planet Earth are
limited by be re-usable, re-purposely, and recycling in order
to reduce waste and environmental impact.

E. KEY TECHNIQUES OF INDUSTRY 5.0
Key enabling technologies of Industry 5.0 [67] include:

• individualised man-machine interaction,
• bio-inspired technologies and smart materials,
• digital twins and simulation,

• data transmission, storage, and analysis technologies,
• Artificial Intelligence,
• technologies for energy efficiency, renewables, storage
and autonomy.

Individualised man-machine interaction supports humans by
working technologies, and, thus, combines human innovation
and machine capabilities. Thereby, computational models
are applied to mimic human thought processes for solving
complex problems [68], and merges AI, ML, pattern recogni-
tion and data mining with a cognitive science. The cognitive
science integrates more distinct interdisciplinary domains,
like visual recognition, language processing, psychology,
philosophy, and anthropology, capable of augmenting human
reasoning and thinking abilities similar to the human
brain [69].
Bio-inspired technologies refer to bio-inspired sensors

embedded into smart materials. The smart materials (also
intelligent and responsive materials) present synthetic mate-
rial that can mimics the biological items encountered in our
daily lives [70]. Characteristics of these materials are [71]:
sustainability, biodegradability, conformability, biorecogni-
tion, self-repair and stimuli response qualities. In line with
this, they are sensitive on the external stimuli, like stress,
moisture, electric or magnetic fields, light, temperature, etc.

Human Digital Twins (HDT) realizes a human-centric
paradigm in smart manufacturing systems of Indus-
try 5.0 [72]. Indeed, the human-system integration is achieved
by coupling human characteristics to system design. As a
result, HDT visualizes the real state of manufacturing system
as 3D simulation with real-time implementation [73]. The
following phases of industrial production in smart factories
are the favorite candidates for the HDT simulations: In
product research and development, the visual models of
products are verified through simulations. Simulation of
equipment operations and parameter adjustment are usually
applied in smart manufacturing. In maintenance, the tasks
of the HDT are, for instance: to determine the proper time
for maintenance, to discover the potential fault points in
industrial production and, consequently, to reduce costs in
industrial manufacturing.

A cyber-security/safe of data transmission between inter-
operability systems serves as the common denominator
of data transmission, storage, and analysis technologies.
In Industry 5.0, data have arisen using networking sensors
in the sense of IOT. These sensors demand the so-called edge
servers that need to be deployed closer to data sources due
to the better performances. Typically, the edge servers are
building blocks of the edge computing. The network sensors
produce a lot of data demanding a big data management.
On the other hand, the big data are analyzed using ML
methods, while the data processing is conducted in clouds.
This means that the ICT in Industry 5.0 captures the whole
spectrum of various ICT devices, i.e., from the simple IOT
sensors to the complex cloud IT infrastructures. From the
security point of view, all computer systems and networks
must be protected by cyber-security in order to prevent

VOLUME 12, 2024 62207



A. Holzinger et al.: Human-Centered AI in Smart Farming: Toward Agriculture 5.0

unauthorized information disclosure, or damage of hardware,
software, or data.

The Industrial AI represents a special case of Narrowed
AI that is capable to solve specific problems arisen in
automating specific, and, typically, repetitive tasks. This
is in contrast with the General AI that tries to create
machines capable of thinking and reasoning like human [74].
In general, the purpose of the Industry 5.0 AI is to detect, for
example, causalities in complex, dynamic systems, leading to
actionable intelligence.

Technologies for energy efficiency, renewables, storage
and autonomy support the sustainable paradigm of Indus-
try 5.0. In line with this, techniques are promoted by this
that lessen the hazardous impacts on nature. Indeed, the
revolutions preceding the fifth revolution never put working
on a sustainable environment as their goal. Industry 5.0,
on the other hand, encourages building such smart factories
that produce minimal waste. Another suitable solution for
improving sustainability represents circular manufacturing
supporting the use of renewable energy sources. Sustainable
storage refers to data storage with minimum effects on
the environment and does not contribute to the depletion
of natural resources. Autonomy in Industry 5.0 affects
enhancing decision-making by human due to more agile and
more efficient processing that is supported with information
from sensors and software. This results in increasingly
efficient and sustainable use of resources.

Finally, the emergence of 6G, anticipated to support
Industry 5.0, will also influence smart agriculture. The
integration of 6G and IoT will enable the deployment of AI
at the network’s edges and facilitate the utilization of digital
twins, IoT, and robotic systems along this pathway [14], [75].

F. HUMAN-INTO-THE-LOOP IN INDUSTRY 5.0
While Industry 4.0 emphasizes an efficient use of industrial
automation, Industry 5.0 is focused on key values of human
resources. This means that worker’s well-being and human
values are put at the centre of the manufacturing/production
processes [66]. The last world crises have exposed limitations
of our planet that stimulate searching for sustainable and
resilient manufacturing production. Although the majority
of the key enabling technologies in Industry 4.0 remains
also the key enabling technologies of Industry 5.0, the new
view on the role of workers into production have brought
updating the key enabling technologies of Industry 4.0, like
edge computing, digital twins [76], cobots and IIoT, and new
applications, including smart health, cloud manufacturing,
and supply chain management.

In Industry 5.0, the AI community has started to develop
in a direction of ‘‘weak AI’’, where specific tasks needs to be
understandable and manageable by humans. Consequently,
the existing concept ’’(hu)man-out-of-the-loop’’ in Indus-
try 4.0 has been replaced by the concept ’’(hu)man-back-
into-the-loop’’ in Industry 5.0 that supports a transparent
human-machine cooperation [77]. Collaboration between

humans andmachines is crucial when it comes to overcoming
challenges arising from device malfunctions or overcoming
ethical dilemmas in decision-making processes.

The human-in-the-loop (HITL) [78] approach makes use
of valuable domain knowledge, expertise and contextual
understanding which sometimes a human expert can bring
in. This approach not only enhances the accuracy and
reliability of AI systems but also fosters transparency and
explainability. This valuable knowledge integration, aka
knowledge injection [79] allows for the correction of biases
and errors that automated systems may overlook, ensuring
that AI outputs are more aligned with ethical standards and
societal values. Moreover, HITL facilitates the continuous
learning and improvement of AI models through dynamic
interaction with human insights, leading to more nuanced
and contextually appropriate AI solutions. Consequently, the
HITL approach significantly contributes to the development
of trustworthy and human-centered AI, promoting a synergy
between human intelligence and artificial capabilities.

IV. FROM AGRICULTURE 4.0 TO AGRICULTURE 5.0
The three previous industrial revolutions have profoundly
changed agriculture - from animal-assisted agriculture to
mechanised agriculture to the recent precision agricul-
ture [80]. In Agriculture 4.0 [81], inspired by Industry
4.0, the focus has mainly been on automation through
the Internet of Things, robotics, artificial intelligence, Big
Data analytics and blockchain technologies, and above all
the paradigm of precision agriculture, which, similar to
precision medicine, is expected to contribute to a huge
improvement in quality [82]. While the precision agriculture
paradigm is showing good success, the initial successes in
automation have given way to the disillusionment that it
will not work to autonomize everything - see the current
limitations of robotics, even in such comparably simple tasks
of autonomous driving.

V. EXISTING APPROACHES AND FRAMEWORKS OF
AGRICULTURE 4.0
In the context of Agriculture 4.0, which encompasses the
integration of advanced digital technologies into farming
practices, several conceptual and operational frameworks
have been developed. These frameworks are designed to
guide the adoption and implementation of technologies like
the Internet of Things, AI, robotics, and big data analytics,
facilitating a transition towards more efficient, sustainable,
and productive agricultural systems. Whilst there is no
universal list of Agriculture 4.0 frameworks due to the
diversity in agricultural practices, technological applications,
and regional needs and requirements, below are some
example issues of such frameworks:

• Precision Agriculture Frameworks: These focus on the
precise and controlled use of agricultural resources,
optimizing inputs like water, fertilizer, and pesticides
through technologies such as GPS-guided equipment,
soil sampling, and drone or satellite imagery. The
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goal is to enhance crop yields and sustainability while
minimizing environmental impacts.

• Smart Farming Frameworks: Such frameworks leverage
IoT and AI to create interconnected farms. Examples
include the use of sensor networks for real-time moni-
toring of crop and soil conditions, automated irrigation
systems, and AI-based decision support systems for
predicting crop health issues.

• Sustainable Agriculture Frameworks: These frame-
works emphasize sustainability and environmental
protection, integrating technologies for resource con-
servation, renewable energy use, and reduction of
greenhouse gases. They support practices that are not
only technologically advanced but also environmentally
sound and economically viable.

• Data-Driven Agriculture Frameworks: Centered on big
data analytics, these frameworks guide the collection,
analysis, and application of data from various sources
(e.g., satellite imagery, weather stations, on-farm sen-
sors) to inform decision-making processes, enhance
productivity, and reduce risks.

• Digital Extension Services Frameworks: Aimed at
improving knowledge transfer, these frameworks lever-
age digital platforms (e.g., mobile apps, online plat-
forms) to provide farmers with timely information,
advisory services, and training on best practices in
Agriculture 4.0.

• Blockchain for Agriculture Frameworks: These involve
the use of blockchain technology for improving supply
chain transparency, traceability, and efficiency, ensuring
food safety and reducing fraud by securely recording
transactions and product movements from farm to
consumer.

• Regulatory and Policy Frameworks: These frameworks
focus on creating conducive regulatory environments
that support the deployment of Agriculture 4.0 tech-
nologies, addressing issues such as data privacy, drone
regulations, and intellectual property rights.

While specific frameworks may vary in name and focus,
common across all is the aim to integrate cutting-edge
technology into agriculture in a way that is sustainable,
efficient, and beneficial for all stakeholders involved, from
farmers to consumers. The effective implementation of these
frameworks requires collaboration between technologists,
agriculturists, policymakers, and communities to ensure that
the benefits of Agriculture 4.0 are fully realized:

• Precision Agriculture approaches
• Smart Pest Management Frameworks
• Sustainable Agriculture/Farming Frameworks
• Digital Supply Chain Frameworks
• Farm Data Privacy Frameworks
In the following sections, we will briefly outline

approaches and frameworks of the essential areas of smart
agriculture where Industry 4.0 left massive traces. The main
goal is to present the existing frameworks, but in some
studied areas, there still needs to be more frameworks

developed, or even frameworks do not exist, i.e., precision
agriculture [83]. Hence, we present established approaches
and leading technologies regarding hardware, algorithms &
methods on which applications are built.

A. PRECISION AGRICULTURE FRAMEWORKS
Precision agriculture (PA) employs various information
technologies to collect data from various sources (i.e.,
water, soil, plants) to support decisions related to crop
production [80], [83]. PA appeared in the early 80s and
is defined by its capacity to optimize resource usage,
minimize unwarranted financial outlays and environmental
pollution, and reap advantages across economic, social,
and environmental domains. This field employs a spectrum
of hardware tools and software solutions, processing data
garnered by these tools to furnish essential information for
decision-making processes [83], [84], [85]. Several goals that
correspond with PA are the following:

• reducing the use of fertilizers and pesticides,
• optimizing the water and nutrient use,
• optimization of the workforce.
Although most farmers in the past and even today are

managing and profiling the whole field based on the average
conditions, PA is intended to address and profile the smaller
parts of the area and hence have a better overview of
conditions found in different parts of the field. According
to the paper [83], five activities are usually associated with
precision agriculture:

• seeding,
• fertilization,
• irrigation,
• disease, pests, and weeds control, and
• harvest.
The recent review paper [83] identified ten hardware

technologies widely applied and utilized in precision agri-
culture. These hardware technologies are the following:
GPS, smartphones & cameras, nanosensors, remote sensors,
sensors in general, unmanned aerial systems, unmanned
aerial vehicles, unmanned ground vehicles, variable rate
technology, and wireless sensor networks (WSN). On the
contrary, the following techniques that fall under the software
umbrella plays a very important role in precision farming, i.e.
geographic information systems, multispectral images, soil
mapping, variable rate applications, variable rate fertilization,
variable rate irrigation, yield maps, yield monitors [83].

Practical ramifications of precision agriculture have been
manifested in numerous applications developed on pure
theoretical and functional levels. Although a lot of research
presents only prototypes, several industries also apply
precision agriculture approaches in the real world. Some
examples of practical utilization of precision agriculture
include machine vision to agriculture, mainly for crop
farming [86] or pest detection using machine vision [87].
Remote sensing techniques are another critical pillar widely
used in precision agriculture [88]. On the other hand, using
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simlutation techniques for crop prediction is another vital
cornerstone of PA [89] or nitrogen status estimation [90].

Finally, according to the literature search, there needs to
be more frameworks or guidelines in precision agriculture
that would guide users/farmers on which combination of
hardware and software can be implemented for specific crops
in the context of precision agriculture. Since the authors of the
paper came to the same conclusion [83], we are convinced
that a human-centric approach developed within the Industry
5.0 may definitely help in this aspect.

B. SMART PEST MANAGEMENT APPROACHES AND
FRAMEWORKS
In addition to weather conditions, crop yields in agriculture
worldwide are also significantly affected by various pests
such as insects and rodents. These pests pose a significant
threat to agricultural productivity, leading to considerable
economic losses and raising concerns about food security.
The destruction caused by various pests often necessitates
the use of chemicals such as herbicides and pesticides, which
pose a threat to the environment and human health and can
have lasting effects on the soil [91], [92].

The swift and reliable monitoring of insect pests is critical
in population prediction and the implementation of control
measures. Traditionally, pest monitoring and identification
relied heavily on specialized experts in the field, demanding
labor-intensive efforts and involving numerous individuals.
However, the emergence of deep learning (DL) techniques
combined with intelligent sensors and cameras has opened
up the potential for monitoring, profiling, and managing
pest populations [87], [93]. These advancements serve as the
foundation for smart pest monitoring (SPM) [94] – many
strategies within SPM hinge on integrating image processing
with classification methodologies.

SPM can also be conceptualized as a versatile framework.
While the authors of paper [94] introduced a unified pipeline
for monitoring insect pests, it could serve as a broader
framework encompassing various types of pests in SPM.
Some adjustments would be necessary to customize data
collection approaches for different pests, such as rodents,
while other steps can be practically very similar.

The outlined pipeline (framework) comprises three distinct
steps or tiers. The initial phase involves automated data
collection, integrating diverse nodes for monitoring insects
and employing techniques to store this data digitally. This
stage also incorporates specialized equipment, such as
various types of traps [95]. Following the data collection
phase, the subsequent stage engages intelligent data pro-
cessing methods. Within this stage, we encompass all the
essential data preprocessing techniques required to refine,
sanitize, and tailor the data to serve as input for artificial
intelligence methods and algorithms. This data processing
phase also encompasses image processing algorithms. Once
the second stage concludes, the final step is designated
for decision-making [96], post-processing visualization [97],

and the assessment of methods. This step also incorporates
explainable AI approaches [98].
In the context of modern agriculture, particularly precision

agriculture augmented by AI, the pursuit of sustainability is
paramount, as underscored by the European Commission’s
‘‘Green Deal Industrial Plan for the Net-Zero Age.’’ This
plan not only advocates for climate neutrality but also
integrates agriculture as a key sector for innovation and
sustainability. PA in this context promises optimized resource
use and enhanced productivity through data-driven decisions.
However, it introduces complexities such as high costs,
data management issues, and a significant skill gap, all of
which can alienate smaller farms and necessitate substantial
investment in training. Moreover, an over-reliance on AI
systems can lead to vulnerabilities in farm operations,
and the environmental impact of the technology’s lifecycle
remains a concern. As the European Commission’s initiatives
suggest, the future of agriculture will increasingly depend
on balancing advanced technological practices with sus-
tainable development. Precision agriculture, while offering
transformative potential, must navigate these challenges to
truly align with the principles of sustainability and climate
neutrality [99].

VI. FRAMEWORK OF AGRICULTURE 5.0
Our framework in Figure 1 is based on a combination of
human-centered AI and Industry 5.0. The central goals are
at the bottom of Figure 1: a stable climate, healthy plants
and soils, environmentally friendly cultivation systems,
sustainable plant products and satisfied customers. To achieve
this goal, we need three major areas in Level 1: (i) crop
monitoring (crop identification, water, nutrient and plant
health monitoring), (ii) crop management (tillage control,
water and nutrient supply, weed, pest and disease control) and
(iii) food technology (quality assessment and control, supply
chain management).

Technically, this is enabled at Level 2 through the use of
digital twins - also to measure changing resources over time,
enable resilience to disturbances and ensure the passability of
fields.

At level 3, this requires a digital hardware infrastructure,
such as Internet-of-Things platforms, robotic platforms and
cyber-physical architectures with cloud computing and the
necessary cyber security.

At the next level 4, this enables a collaborative digital
ecosystem for the entire agricultural supply chain (from farm
to fork) with collaborative, transparent decision-making.

Level 5 is the area of privacy, safety, security and ensures
occupational safety (accident prevention), eco-efficiency,
cost efficiency, simulation and training and new engaging
forms of education and instruction.

Finally, at level 6, at the top of our system is a
human-centered AI that ensures robustness and explainability
and thus enables the necessary trustworthiness (in social,
ethical and legal terms) with the aim of complementing and
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FIGURE 1. The framework: Human-centered AI + industry 5.0 = agriculture 5.0.

not replacing human capabilities and thus also taking away
the fears of new technologies.

Sustainable land management requires the protection
and promotion of natural soil fertility. Various concepts
are discussed for this purpose, such as organic farming,
conservation tillage and regenerative agriculture. The aim
of all these approaches is to cultivate the soil in such a
way that plant growth and health are promoted without
or with reduced use of synthetic chemical substances such
as mineral fertilisers and pesticides. The EU’s Green Deal
calls for and promotes such forms of cultivation. AI can
support the selection of suitable crop rotations. At field level,
sensors can be used to determine the condition of crops in
terms of nutrient supply and health. Mixed crops of different
plant species in order to increase biodiversity in the field
pose a challenge here. Important unresolved tasks are the
differentiation of the species in the crop in order to be
able to determine their proportions quantitatively, as well as
the separate determination of biomass, nutrient supply and
health status of the mixture components. Increasingly, soil
microorganisms - both naturally occurring and artificially
inoculated - are being propagated to support plant populations
in terms of growth and health. Sensor applications that can
determine and quantify the effectiveness of such treatments
on nutrient uptake and plant health, combined with forecast
models are helpful for testing the effectiveness of such
treatments.

VII. CONCLUSION
Our Agriculture 5.0 framework marries the principles of
Human-Centered AI with the ideals of Industry 5.0 to
propel forward the cause of sustainable farming practices.

It is dedicated to fostering climate resilience, enhancing the
health of plants and soil, fostering ‘‘One Health’’ [100]. The
framework employs environmentally friendly approaches,
and is ensuring consumer contentment. This model encom-
passes exhaustive surveillance of field crops (including plant
identification, andmonitoring of water, nutrients, and health),
strategic management practices (covering soil, water, nutrient
management, and pest mitigation), alongside innovations
in food technology (spanning quality assurance and supply
chain optimization). At the heart of this framework lie
digital twins, pivotal for efficient resource utilization and
fortifying resilience, all built upon a solid digital foundation
that includes IoT, robotics, and cyber-physical systems,
buttressed by cloud technology and rigorous cybersecurity
protocols.

This architecture fosters a synergistic digital ecosystem
that enhances decision-making, safety, eco-efficiency, and
training. At its core lies a robust, explainable, and trustworthy
human-centered AI, designed to augment human capabilities
and maintain human oversight. With a focus on sustainable
landmanagement, our approach promotes natural soil fertility
and practices such as organic farming and conservation
tillage, aligning with initiatives like the EU’s Green Deal.
AI plays a pivotal role in optimizing crop rotation and
deploying field-level sensors for precise crop condition
monitoring.

However, challenges persist, including species differenti-
ation in mixed cropping systems and separate evaluations of
biomass, nutrient supply, and health.We are also investigating
the potential of soil microorganisms and sensor-driven prob-
abilistic models to boost plant health and nutrient absorption.
Our framework is not just a technological leap but a step
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towards a more sustainable, efficient, and human-centric
agricultural future.
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