
NiaNetAD: Autoencoder architecture search for
tabular anomaly detection powered by HPC

Sašo Pavlič
University of Maribor

Faculty of Electrical Engineering
and Computer Science

Koroška cesta 46, 2000 Maribor
Slovenia

Email: saso.pavlic@student.um.si

Sašo Karakatič
University of Maribor

Faculty of Electrical Engineering
and Computer Science

Koroška cesta 46, 2000 Maribor
Slovenia

Email: saso.karakatic@um.si

Iztok Fister Jr.
University of Maribor

Faculty of Electrical Engineering
and Computer Science

Koroška cesta 46, 2000 Maribor
Slovenia

Email: iztok.fister1@um.si

Abstract—In the era of Industry 4.0, predictive maintenance
(PdM) has become increasingly important for ensuring the
efficient and reliable operation of machinery. However, the
complexity and diversity of industrial datasets acquired from
these sensors can make it challenging to detect anomalies and
predict when preventative maintenance is necessary. The pro-
posed NiaNetAD (Nature-Inspired Algorithms for Deep Neural
NeEtwork creaTion for Anomaly Detection) method addresses
this challenge by using nature-inspired algorithms (NIAs) to
construct an auto-encoder (AE) neural network, which identifies
anomalies in the machine’s operation. The anomalies in this
case refers to unusual patterns in the machine state, which
could indicate an eventual breakdown. By using NiaNetAD on
industrial datasets, it can help identify potential failures and
schedule maintenance before they occur, reducing downtime,
improving equipment lifespan, and lowering maintenance costs.
The results of the NiaNetAD experiment, which was conducted
on a high-performance computing (HPC) platform with multiple
NIAs, demonstrated the significance of an effective and dispersed
search strategy when constructing an AE architecture for a
specific task. When applied to unsupervised anomaly detection
(AD) on a fault detection dataset, the results indicate that
improving the AE’s reconstruction loss, reducing the bottleneck
size, and avoiding excessive complexity in the topology can result
in better outcomes.

Index Terms—predictive maintenance, autoencoder, anomaly
detection, nature-inspired algorithms, optimization, high-
performance computing, unsupervised learning

I. INTRODUCTION

A. Current situation in Predictive maintenance

PdM is a technique that utilizes data from industrial pro-
duction processes to predict machine failures and recommend
preventive maintenance [1]. The system analyzes sensor data
to detect abnormal machine behavior, allowing maintenance
teams to schedule repairs before breakdowns occur [2]. This
approach reduces costs associated with downtime and in-
creases overall efficiency [3]. Machine learning techniques
like random forest, artificial neural networks (ANNs), and
support vector machines are commonly used for PdM, with
vibration signal data being the preferred input for AD [4], [5].
However, challenges persist in automating outlier detection

This research was funded by the Slovenian Research Agency (research core
funding No. P2-0057)

using neural architecture search (NAS) methods, including
defining the search space, addressing unsupervised settings,
handling imbalanced data, and ensuring sample efficiency [6]–
[9].

B. Our approaches to ongoing challenges

We enhance NiaNet [10] to find optimal AE architectures
for detecting anomalies in fault detection datasets. Using
evolutionary algorithms, we minimize the need for raw data
analysis by identifying outliers. Our approach employs a multi-
objective function to reduce reconstruction loss and com-
plexity, enabling NiaNetAD to adapt automatically to diverse
tabular datasets with minimal human intervention.

We conduct comprehensive experiments on fault detection
datasets, comparing NiaNetAD’s performance with a random
classifier. Our contributions include extending previous work
for AD in tabular datasets, applying NiaNetAD to a real-
world dataset to obtain optimal AE architectures and threshold
values, and proposing objective function formulation and ex-
periment variables to evaluate the method’s performance with
multiple NIAs.

The remaining structure of this paper is as follows. Sec-
tion II briefly describes the related works. Further information
on challenges in PdM can be found in Section III. Section IV
presents the proposed method NiaNetAD. Obtained results of
the experiment are presented in Section V. The last Section VI
contains the conclusion and future steps.

II. RELATED WORKS

In Section II, we focus on summarizing strategies for auto-
matically designing ANN architectures, known as NAS or neu-
roevolution techniques, specifically applied to AD problems.
Anomaly detection presents distinct challenges and require-
ments that need effective differentiation between anomalous
and normal data.

Jiao et al. [11] addressed challenges in NAS systems for
outlier detection with limited data samples by introducing
the AutoOD method. The authors employed a self-imitation
learning-based experience replay mechanism to enhance sam-
ple efficiency and overcome issues like local optimality and

CINTI 2023 • IEEE 23rd International Symposium on Computational Intelligence and Informatics • November 20-22, 2023 • Budapest, Hungary

979-8-3503-4294-9/23/$31.00 ©2023 IEEE 000083

20
23

 IE
EE

 2
3r

d
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 a
nd

 In
fo

rm
at

ic
s (

C
IN

TI
) |

 9
79

-8
-3

50
3-

42
94

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
C

IN
TI

59
97

2.
20

23
.1

03
81

93
5

Authorized licensed use limited to: University of Maribor. Downloaded on May 31,2024 at 15:44:10 UTC from IEEE Xplore. Restrictions apply.

unfair bias. Their proposed framework was evaluated against
random search on benchmark datasets.

Termritthikun et al. [9] proposed NAS techniques using
MultiObjective Genetic Algorithm and Firefly Algorithm to
develop an efficient CNN model for resource-constrained
devices. Their experiments on various datasets, including crack
detection datasets, showed reduced processing time and pa-
rameters with comparable classification accuracy, suggesting
suitability for deployment on such devices.

III. CHALLANGES OF PREDICTIVE MAINTENANCE

One major challenge in PdM for equipment is managing
large, complex datasets with increasing volume, leading to
overfitting and poor model performance. The high dimension-
ality and sparsity of data further hinder identifying relevant
patterns.

Non-stationary data, which changes over time, poses diffi-
culties for traditional AD methods designed for stationary data.
Integrating and pre-processing data from various sources, such
as sensor data, maintenance records, and weather data, adds
complexity to the task.

Interpretability is a significant issue as complex models like
deep learning lack transparency, making it hard for domain ex-
perts to understand predictions and identify important features.
Lastly, real-time PdM demands processing vast data volumes
promptly to prevent equipment failure [1], [4], [5].

A. Architecture for anomaly detection

A range of DNN architectures can be used for AD on
datasets. Serradilla et al. [12] mention three commonly used
DNN architectures for this task: AE, CNN, RNN, and GAN.
Combinations like VAE and LSTM can also be employed. In
our research, we focused on the challenge of extracting mean-
ingful patterns from high-dimensional data with few instances.
We employed an AE model, which effectively reduces dimen-
sionality [13]. AE architectures require fewer resources than
CNN architectures for dimensionality reduction. To handle
limited data instances, we used NIA’s to discover the optimal
AE architecture. The ideal AE architecture should be simple
enough to capture patterns but not overly simplistic to avoid
overfitting.

IV. PROPOSED METHOD

We introduce NiaNetAD 1, an extension of our previous
work [10], aimed at detecting anomalies in real-world datasets.
NiaNetAD builds on our designed system, which identified
topology and hyper-parameters for efficient encoding in an
AE model. The proposed method utilizes a learning-based
system to automatically find the most effective AE model for
AD. It determines an optimal threshold value to distinguish
normal and anomalous data instances. Additionally, we employ
the PyTorch Lightning framework [14] to ensure adaptability
across various hardware infrastructures, such as GPUs or HPC
clusters, enabling exploration of a broader search space in less
time.

1https://github.com/SasoPavlic/NiaNetAD

A. Pipeline Overview

The NiaNetAD method operates through a pipeline consist-
ing of several key components, as shown in Fig. 1. The user
provides a tabular dataset and initial search strategy parameters
as inputs. NiaNetAD is initialized along with its main depen-
dency, the NiaPy [15] framework for solution optimization.
Solutions generated are transformed into working AE models,
which are evaluated iteratively until a user-defined stopping
criterion, like a specified number of iterations or performance
metrics, is met. The optimal solution is then transformed into
a final AE model and tested on a separate dataset to obtain
reconstruction losses for each sample. These losses are used
to determine the optimal threshold value, which is utilized in
the AD process.

B. Representing individuals

The search space of the NiaNetAD method is bounded by
an AE-shaped topology and a list of hyper-parameters. We
propose the objective function formulation and a collection
of nature-inspired algorithms to guide the search strategy
direction away from falling into the curse of local optimum.
With this search set, we tend to discover global optimum AE
architectures for unsupervised AD in tabular datasets. Before
moving forward, we need to understand what the solution array
is. This is explained in the equation 1.

χ
(j)
i =

{
x
(j)
i,0 , . . . , x

(j)
i,n

}
, for i = 0, . . . , Np − 1 (1)

Where each element of the solution is in the interval χ(j)
i,1 ∈

[0, 1]. Real values in interval are then mapped according
to equations [2-6], where y1 stands for topology shape, y2
layer neuron delta, y3 for number of layers, y4 for activation
function, y5 for number of epochs, y6 for learning rate, y7 for
optimizer algorithm.

y1, y4, y7 = ⌊x[i]⌋; y1 ∈ [0, 1] (2)

y2 = ⌊ x[i]

features
⌋; y2 ∈ [0, features] (3)

y3 = ⌊ x[i]

maxLayers
⌋; y33 ∈ [0,maxLayers] (4)

y5 = ⌊x[i] · 10 + 100⌋; y5 ∈ [100, 200] (5)

y6 = ⌊ x[i]
1000

⌋; y6 ∈ [10−3, 10−0] (6)

As in the NiaNet paper, the solution array A =
[x1, x2, x3, x4, x5, x6, x7] is partitioned into two segments.
The first three elements dictate the topology, while the last
four specify the hyper-parameters, as seen in Fig. 2.

After the search strategy algorithm generates an array
of continuous solutions, the encoding process begins. This
process maps all variables, [y1-y7], using equations [2-6] by
applying the binning process to each variable individually.

S. Pavlič et al.• NiaNetAD: Autoencoder architecture search for tabular anomaly detection powered by HPC

000084

Authorized licensed use limited to: University of Maribor. Downloaded on May 31,2024 at 15:44:10 UTC from IEEE Xplore. Restrictions apply.

Start NiaNet method

Retrieve optimal ML
model architecture

NO

YES

Is termination criteria
met?

Deploy the ML
model

Evaluate model
performance

Generate new model
architecture

Deploy the optimal ML
model

Train
Dataset

Parameters

END Define threshold
based on dataset

Compute model
loss

Test
Dataset

Detect anomalies

Fig. 1: An high-level overview of the NiaNetAD pipeline showcases the process of initiating a search process based on the dataset and initial
parameters. As the search process undergoes iterations, the optimal solution is determined and mapped onto a functioning AE model for AD
purposes.

To start, the binning process creates a specified number of
bins within the interval of ∈ [0, 1]. The number of bins is
determined by the number of possible values a single variable
can hold. Next, the binning process takes each element value
and maps it to a PyTorch [16] object, effectively encoding the
continuous solution into a discrete format.

C. Fitness function

The fitness function, as expressed in equation 9, is utilized
to evaluate the solutions generated during the evolutionary ex-
ploration of the search space. Two sub-functions, as presented
in equations [7-8], are employed to find the optimal balance
between the reconstruction error and the complexity of the
model.

RMSE = α1 ·

√√√√ 1

N

N∑
i=1

|xi − x̂i|2 (7)

Where RMSE represents the reconstruction error of the AE
model and α1 is weighting constant.

C =
(y5)

α2 + (y3 · α3) + (bottleneck dim · α4)

α5
(8)

Where C represents the topology complexity of the AE model
and α2,α3,α4,α5 are weighting constants.

f(χ
(j)
i) = minE + C (9)

Where f(χ
(j)
i) represents the fitness value of an individual in

evolution with goal to find the global minimum.

D. Detecting anomalies

Applications for AEs can be found across industries [17]–
[19]. They are also effective for discovering anomalies in
datasets. The method for AD using an AE assumes that the
model learns to represent the majority of similar data well, but
not as well for dispersed and abnormal minority samples. To
detect anomalies, a trained AE model is utilized. Data is loaded

in batches, and the model calculates the Root Mean Square
Error (RMSE) for each sample. Anomalies are identified by
RMSE values exceeding a set threshold. This threshold is
determined by analyzing the distribution of reconstruction
errors and setting a value higher than the population mean.

E. Algorithm pseudo-code

In order to understand what was changed from our previous
work, we will first look into the pseudocode of NiaNetAD,
which extends the functionalities. In this updated version, the
main difference, is the capability to use the designed AE
models for detecting anomalies in the dataset and setting the
optimal threshold value. As we can see the Alg. 1.

Algorithm 1 Proposed method
Input: Tabular dataset, Search strategy parameters
Output: Abnormal data instances

1: NiaNetAD.init(parameters)
2: while terminationConditionNotMet do
3: solution ← NiaNetAD.getBestSolution()
4: AE ← Autoencoder(solution)
5: AE.shape ← AE.mapShape()
6: AE.layerStep ← AE.mapLayerStep()
7: AE.layers ← AE.mapLayers(
8: AE.activation ← AE.mapActivation()
9: AE.epochs ← AE.mapEpochs()

10: AE.LR ← AE.mapLearningRate()
11: AE.optimizer ← AE.mapOptimizer()
12: fitness ← TrainEvaluate(AE, dataset)
13: NiaNetAD.generateNewSolution(fitness)
14: end while
15: AE ← NiaNetAD.getOptimalModel()
16: RMSE ← CalculateLoss(AE.predict(dataset) - outputs)
17: threshold ← RMSE.mean()
18: return dataset[RMSE > threshold]

CINTI 2023 • IEEE 23rd International Symposium on Computational Intelligence and Informatics • November 20-22, 2023 • Budapest, Hungary

000085

Authorized licensed use limited to: University of Maribor. Downloaded on May 31,2024 at 15:44:10 UTC from IEEE Xplore. Restrictions apply.

V. EXPERIMENT AND RESULTS

The purpose of experimental work is to determine whether
the proposed method is capable of designing competitive AE
models for AD on fault detection datasets. We conducted the
experiments to answer the following research questions:

1) Q1: Does lower reconstruction error provide better AD
results?

2) Q2: Does increasing the number of algorithm iterations
result in higher AUC score?

3) Q3: How effective is the fittest AE model, proposed by
NiaNetAD compared with a random classifier?

4) Q4: How effective is the proposed search strategy when
compared to random search?

A. Dataset Overview

In this section, we present the dataset used as input for our
method, NiaNetAD, which proposes an optimal AE model.
The dataset was chosen to address a real-world practical
problem and consists of data samples from a sewage treatment
plant in Istanbul. The data was collected using sensors to
monitor bearing movement, capturing temperature and vi-
bration. These sensors were mounted on both the pump’s
driving end (DE) and non-driving end (NDE) bearings. The
dataset contains 60 features, 2152 instances, and is divided
into two classes: normal (1221 instances) and anomalous (931
instances).

The dataset contains discrete numerical data representing
each feature. It includes original temperature and vibration
values, along with additional temporal features (TF). The
TFs were extracted and added to the dataset using standard
statistical measures such as mean, standard deviation (SD),
range, skewness, kurtosis, maximum, minimum, and various
percentiles (Q95, Q90, Q80). These temporal features enhance
the fault detection dataset. The addition of these temporal fea-
tures is a common practice in the field of fault detection [20]–
[22]. The extracted features serve to provide valuable insights
into the behavior of the system and enhance the accuracy of
the fault detection process.

B. Enviromental setup

The proposed method, NiaNetAD, requires specific software
and hardware prerequisites for implementation. We used vari-
ous Python libraries, including NiaPy for optimizing solutions
with NIAs, Scikit-learn for DNN model evaluation [23],
NumPy for array operations [24], PyTorch for DNN initializa-
tion [16], and PyTorch Lightning for distributed training [14].
For hardware, we utilized a HPC with 6 dual-processor com-
pute nodes, each equipped with 4 Nvidia V100 GPUs. Each
node had 32 GB of GPU memory and ran on Rocky Linux
8.5 (Green Obsidian) [25]. This configuration enabled efficient
search space exploration and faster experiment execution.

C. Experimental settings

In NiaPy experiments, we controlled various parameters:
DIM = 7 for dimensionality, POP = default for population
size, and ME = 1000 for maximum function evaluations. We

used a single repetition R = 1 and set LB = 0.0 and UB = 1.0
for lower and upper search space bounds.

The activation functions list included: ELU, RELU, Leaky
RELU, RRELU, SELU, CELU, GELU, Tanh. Optimizers list
contained: Adam, Adagrad, SGD, RAdam, ASGD, Rprop.
Fixed training parameters: batch size = 10, data split ratio
65:25:10, early stopping patience = 50, min delta = 0.00.

Weighting constants: α1 = 1000, α2 = 2, α3 = 100, α4 =
10, and α5 = 100.

D. Results

This section provides an overview of the findings from
experimenting with our NiaNetAD method. The aim is to
determine the key factors contributing to a robust AE model
for AD, such as architecture, model complexity, and recon-
struction error. Additionally, we aim to understand how the
NiaNetAD method improves its models over the course of
multiple iterations.

Duration of Exploration: Building upon the environmental
setup described in the preceding subsection, the evaluation
was carried out using specific control parameters. The total
execution time under these experimental conditions amounted
to 44 GPU days.

Results by the optimization algorithm: Our examination
revealed the following outcomes. The top solutions produced
by PSO, DE, FA, jDE, and GA algorithms are presented in
Table I. The FA algorithm reached the lowest fitness value
(minimization problem), followed by the DE and PSO algo-
rithm. The GA and jDE algorithms reached significantly higher
fitness scores. Upon conducting our experiments, we observed
a lack of correlation between the AUC scores and the results
obtained from our proposed fitness function. Specifically, the
solutions identified as optimal by the AUC scores did not
correspond to the lowest fitness values within the population.
This observation leads us to conclude that an AE with a
minimal RMSE and simple complexity may not be sufficient
for effectively detecting anomalies in complex systems. With
these findings, we concluded that the answer to the research
question Q1 is false.

To answer the question Q2, the Mann-Kendall test [26] was
used to determine if there was a trend in the rolling statistics
of the AUC metric over the iterations of the algorithms. The
mean performance was calculated, and it was found that the
PSO, DE, and jDE algorithms were gradually finding better
solutions, while the FA and GA algorithms were showing a
decreasing trend. Additionally, the SD metric was calculated to
examine the stability of the search strategy. It was found that
the DE and jDE algorithms were becoming more stable over
time, while the PSO, FA, and GA algorithms were becoming
less stable.

Fittest AE architecture: Following is the fittest AE ar-
chitecture discovered by the NiaNetAD method. Among the
optimization algorithms listed in Table I the DE algorithm
discovered the most optimal topology and hyper-parameters
for a given dataset. The Fittest AE architecture solution was
discovered after 504 iterations of the search process, and it

S. Pavlič et al.• NiaNetAD: Autoencoder architecture search for tabular anomaly detection powered by HPC

000086

Authorized licensed use limited to: University of Maribor. Downloaded on May 31,2024 at 15:44:10 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Performance comparison of optimal solutions discovered by NiaNetAD using selected algorithms, as measured by high AUC
scores.

Algorithm AUC Fitness
value RMSE Bottleneck

size
Layers
in AE Epochs Activation

function
Learning

rate
Optimizer
algorithm

DE 0.84 2116 1.92 17 2 140 ELU 0.07 Adagrad
PSO 0.83 2345 2.11 31 2 150 ELU 0.12 Adagrad
FA 0.81 1649 1.28 28 2 190 RRELU 0.01 RAdam
GA 0.79 2829 2.56 53 2 160 RELU 0.10 Adagrad
jDE 0.77 3751 3.62 7 2 110 SELU 0.48 Adagrad

reached the value of 0.84 in the AUC metric on a test dataset.
The AE topology was mapped from DE’s proposed solution
based on the encoding strategy. The AE model was split into
encoder and decoder parts, where the bottleneck size was 17.
Both the encoder and decoder were mirrored versions of each
other. If the encoder was encoding the 60-D input vector to the
17-D latent vector, then the decoder was decoding the latent
vector back to the 60-D output vector. The selected bottleneck
size was good enough to generalize input data into lower
dimensional representation and then to decompress normal
data instances with lower reconstruction error than anomalous
ones.

y1:
0.00

y2:
0.73

y3:
1.00

y4:
0.00

y5:
0.35

y6:
0.06

y7:
0.18

Topology

Hyper-parameters
Fig. 2: A representation of the allocation of solution array indices
[y1-y7] to variables, which are later utilized to map it to a PyTorch
model.

The topology of the AE was based on the first three
elements of the solution array. The derived AE model was
divided into two distinct components, an encoder, and a
decoder, with the bottleneck size set at 17. This can be seen
in Fig. 3. Both the encoder and decoder were symmetric in
design, with the encoder compressing a 60-D input vector
into a 17-D latent vector, and the decoder decompressing the
latent vector back into a 60-D output vector. The encoder and
decoder both utilized a Linear layer, which is a type of fully
connected layer commonly used in neural networks.

The final four elements of the solution array were utilized
to map the hyper-parameters for the AE model. These were
set as follows: activation function = ELU, epochs = 140,
learning rate = 0.07, and optimization algorithm = Adagrad.
The solution array element values are visible on Fig. 2.

Achieved performance: The selected bottleneck size was
considered sufficient for effectively generalizing input data
into a lower-dimensional representation, which resulted in
decompressing normal data instances with a lower RMSE
mean of 14.58, as compared to anomalous instances which
had a higher mean RMSE of 17.90. Additionally, normal in-
stances displayed an RMSE with SD of 2.46, while anomalous
instances had a significantly higher SD of 7.51. Furthermore,
we can view the RMSE and MSE scores for the entire train
and test datasets in Table II.

TABLE II: Performance comparison for RMSE, MSE, and Accuracy
metrics on all data points in the train and test datasets.

Train Test
RMSE 4.71 4.82
MSE 1.39 1.40
Acc 0.80 0.79

The dataset used to train the AE model had a relatively bal-
anced distribution of anomalous and normal instances, which
made it challenging to train the AE model effectively using an
unsupervised technique. Despite this, the AE model was able
to reach an AUC of 0.84, indicating a decent performance as
illustrated in Fig. 4. The accuracy of the model on the training
and testing datasets was found to be 0.80 and 0.79 respectively
as seen in Table II when using the optimal threshold FPR =
0.24 and TPR = 0.84. The trapezoidal rule [27] returned the
value of 15.6 for this threshold. This finding gives an answer
to question Q3, on how effective is the fittest AE model in
comparison with the random classifier.

Following are the findings to a question Q4. The findings
demonstrate that not only does the top model produced by
our NiaNetAD method outperform that of a random search,
but the improvement in the average performance of the top
models is much more pronounced. This demonstrates that
NiaNetAD more effectively and efficiently discovers high-
performing models compared to a random search. Addi-
tionally, there is a noticeable upward trend in the average
performance of NiaNetAD over time, which is not present
in the random search results. This suggests that our search
controller continually improves and refines its strategies based
on past search experiences, whereas the random search has a
limited ability to uncover optimal models. Lastly, the SD of the
search process is significantly reduced when using our search
strategy, compared to the random search, which indicates a
more consistent and stable search process.

Inputs (60)

Latent space (17)

Outputs (60)

D
ecoder

Encoder

Fig. 3: The fittest topology discovered. Symmetric encoder and
decoder, compressing 60-D input to 17-D latent vector and decom-
pressing it back to 60-D output.

CINTI 2023 • IEEE 23rd International Symposium on Computational Intelligence and Informatics • November 20-22, 2023 • Budapest, Hungary

000087

Authorized licensed use limited to: University of Maribor. Downloaded on May 31,2024 at 15:44:10 UTC from IEEE Xplore. Restrictions apply.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

itiv
e R

ate
 (T

PR
)

(0.24, 0.84)

Autoencoder (AUC = 0.85)
Random classifier (AUC = 0.50)
Distance = 0.29
Optimal threshold (FPR=0.24, TPR=0.84)

Fig. 4: Optimal AE model performance for AD on fault detection
dataset: AUCROC metric calculated using FPR and TPR metrics with
optimal threshold value.

VI. CONCLUSION

In conclusion, the suggested NiaNetAD approach offers a
potentially effective way to handle the problems associated
with PdM in the era of Industry 4.0. It can effectively rec-
ognize irregularities in the operation of machinery, which can
assist predict probable breakdowns and planning maintenance
before they happen. This is accomplished by employing NIAs
to build an AE neural network. As a result, there may be less
downtime, longer equipment life, and cheaper maintenance
expenses.

In general, the utilization of NiaNetAD for PdM of ma-
chinery sensors can improve the functioning of machines
by ensuring that they are consistently operating at optimal
levels, reducing the likelihood of unanticipated breakdowns,
enhancing productivity, and providing economic benefits.

Going forward, our goal is to further test our method
using well-established benchmark datasets and compare its
performance with other competitive methods. This will give
us a deeper understanding of the strengths and areas for
improvement of our approach.

REFERENCES

[1] T. Zonta, C. A. da Costa, R. da Rosa Righi, M. J. de Lima, E. S.
da Trindade, and G. P. Li, “Predictive maintenance in the industry 4.0:
A systematic literature review,” vol. 150, p. 106889. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0360835220305787

[2] S. Namuduri, B. N. Narayanan, V. S. P. Davuluru, L. Burton,
and S. Bhansali, “Review—deep learning methods for sensor based
predictive maintenance and future perspectives for electrochemical
sensors,” vol. 167, no. 3, p. 037552, publisher: IOP Publishing.
[Online]. Available: https://dx.doi.org/10.1149/1945-7111/ab67a8

[3] E. Florian, F. Sgarbossa, and I. Zennaro, “Machine learning-based
predictive maintenance: A cost-oriented model for implementation,”
vol. 236, p. 108114. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0925527321000906

[4] T. P. Carvalho, F. A. A. M. N. Soares, R. Vita, R. d. P.
Francisco, J. P. Basto, and S. G. S. Alcalá, “A systematic
literature review of machine learning methods applied to predictive
maintenance,” vol. 137, p. 106024. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0360835219304838

[5] J. Dalzochio, R. Kunst, E. Pignaton, A. Binotto, S. Sanyal, J. Favilla,
and J. Barbosa, “Machine learning and reasoning for predictive
maintenance in industry 4.0: Current status and challenges,” vol. 123,
p. 103298. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0166361520305327

[6] H. T. Ünal and F. Başçiftçi, “Evolutionary design of neural network
architectures: a review of three decades of research,” vol. 55,
no. 3, pp. 1723–1802. [Online]. Available: https://doi.org/10.1007/
s10462-021-10049-5

[7] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, and X. Wang,
“A comprehensive survey of neural architecture search: Challenges and
solutions.” [Online]. Available: http://arxiv.org/abs/2006.02903

[8] Y. Li, Z. Chen, D. Zha, K. Zhou, H. Jin, H. Chen, and X. Hu, “AutoOD:
Neural architecture search for outlier detection,” in 2021 IEEE 37th
International Conference on Data Engineering (ICDE), pp. 2117–2122,
ISSN: 2375-026X.

[9] C. Termritthikun, L. Xu, Y. Liu, and I. Lee, “Neural architecture search
and multi-objective evolutionary algorithms for anomaly detection,” in
2021 International Conference on Data Mining Workshops (ICDMW),
pp. 1001–1008, ISSN: 2375-9259.

[10] S. Pavlič, I. F. Jr, and S. Karakatič, “NiaNet: A framework
for constructing autoencoder architectures using nature-inspired
algorithms,” in Annals of Computer Science and Information
Systems, vol. 30, pp. 109–116, ISSN: 2300-5963. [Online]. Available:
https://annals-csis.org/Volume 30/drp/192.html

[11] Y. Jiao, K. Yang, D. Song, and D. Tao, “TimeAutoAD: Autonomous
anomaly detection with self-supervised contrastive loss for multivariate
time series,” vol. 9, no. 3, pp. 1604–1619, conference Name: IEEE
Transactions on Network Science and Engineering.

[12] O. Serradilla, E. Zugasti, J. Rodriguez, and U. Zurutuza, “Deep learning
models for predictive maintenance: a survey, comparison, challenges
and prospects,” vol. 52, no. 10, pp. 10 934–10 964. [Online]. Available:
https://doi.org/10.1007/s10489-021-03004-y

[13] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,”
in Proceedings of ICML Workshop on Unsupervised and Transfer
Learning. JMLR Workshop and Conference Proceedings, pp. 37–49,
ISSN: 1938-7228. [Online]. Available: http://proceedings.mlr.press/v27/
baldi12a.html

[14] W. Falcon and The PyTorch Lightning team, “PyTorch lightning.”
[Online]. Available: https://github.com/Lightning-AI/lightning

[15] G. Vrbančič, L. Brezočnik, U. Mlakar, D. Fister, and I. Fister, “NiaPy:
Python microframework for building nature-inspired algorithms,”
Journal of Open Source Software, vol. 3, no. 23, p. 613, Mar. 2018.
[Online]. Available: https://joss.theoj.org/papers/10.21105/joss.00613

[16] PyTorch. [Online]. Available: https://www.pytorch.org
[17] L. Gondara, “Medical image denoising using convolutional denoising

autoencoders,” pp. 241–246. [Online]. Available: http://arxiv.org/abs/
1608.04667

[18] T.-H. Song, V. Sanchez, H. EIDaly, and N. Rajpoot, “Hybrid deep
autoencoder with curvature gaussian for detection of various types of
cells in bone marrow trephine biopsy images.”

[19] A. Radhakrishnan, K. Yang, M. Belkin, and C. Uhler, “Memorization
in overparameterized autoencoders.” [Online]. Available: http://arxiv.
org/abs/1810.10333

[20] Y. Liu, Z. Pang, M. Karlsson, and S. Gong, “Anomaly detection
based on machine learning in IoT-based vertical plant wall for
indoor climate control,” vol. 183, p. 107212. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0360132320305837

[21] D. B. Araya, K. Grolinger, H. F. ElYamany, M. A. M. Capretz, and
G. Bitsuamlak, “Collective contextual anomaly detection framework for
smart buildings,” in 2016 International Joint Conference on Neural
Networks (IJCNN), pp. 511–518, ISSN: 2161-4407.

[22] W. Elmasry and M. Wadi, “Enhanced anomaly-based fault detection
system in electrical power grids,” vol. 2022, p. e1870136, publisher:
Hindawi. [Online]. Available: https://www.hindawi.com/journals/itees/
2022/1870136/

[23] “scikit-learn: machine learning in Python — scikit-learn 1.0.2
documentation.” [Online]. Available: https://scikit-learn.org/stable/

[24] “NumPy.” [Online]. Available: https://numpy.org/
[25] Rocky linux. [Online]. Available: https://rockylinux.org/
[26] M. Kendall, “Rank correlation methods. 2nd impression,” Charles

Griffin and Company Ltd. London and High Wycombe, 1975.
[27] W. L. England, “An exponential model used for optimal threshold

selection on ROC curues,” vol. 8, no. 2, pp. 120–131, publisher:
SAGE Publications Inc STM. [Online]. Available: https://doi.org/10.
1177/0272989X8800800208

S. Pavlič et al.• NiaNetAD: Autoencoder architecture search for tabular anomaly detection powered by HPC

000088

Authorized licensed use limited to: University of Maribor. Downloaded on May 31,2024 at 15:44:10 UTC from IEEE Xplore. Restrictions apply.

