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ABSTRACT This paper proposes a variable-length Differential Evolution for Association Rule Mining.
The proposed algorithm includes a novel representation of individuals, which can encode both numerical
and discrete attributes in their original or absolute complement of the original intervals. The fitness function
used is comprised of a weighted sum of Support and Confidence Association Rule Mining metrics. The
proposed algorithm was tested on fourteen publicly available, and commonly used datasets from the UC
Irvine Machine Learning Repository. It is also compared to the nature inspired algorithms taken from the
NiaARM framework, providing superior results. The implementation of the proposed algorithm follows the
principles of Green Artificial Intelligence, where a smaller computational load is required for obtaining
promising results, and thus lowering the carbon footprint.

INDEX TERMS Association rule mining, differential evolution, data mining, variable-length solution
representation, green AI.

I. INTRODUCTION
In today’s world, the amount of data stored in real-world
databases is growing rapidly and shows no signs of
slowing down [1]. These databases encompass a variety of
fields, including medical, scientific, financial, and marketing
transaction data, with many containing vast amounts of
information [2]. As a result, analyzing these datasets and
uncovering valuable insights has become a major challenge.
Over the past decade, the most effective approach to
addressing this issue has been through Data Mining methods
focused on knowledge discovering in large data sets. These
methods are divided into descriptive and predictive. The
former are devoted for searching the properties of data, while
the latter are capable of making predictions. In general, the
Data Mining is comprised of methods for association rule
mining, classification, regression, clustering, deep learning,
and outlier analysis [3].
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Association Rule Mining (ARM) is a widely-used method
for discovering relationships between attributes in large
databases. The method aims to identify rules that exhibit
a high level of interestingness based on various measures.
The idea of discovering regularities between products in
large-scale transaction databases was first introduced by
Agrawal et al. [4], who is widely considered the pioneer of
teh ARM. Agrawal proposed the Apriori algorithm, which
has become a standard approach in this field since it was born
in 1994. Typically, this algorithm selects association rules
based on measures of interestingness, such as support and
confidence, in order to identify the most significant attribute
relationships in transaction databases.

With the increasing size and complexity of datasets,
traditional algorithms often encounter challenges in terms
of high computational complexity when mining for and
generating association rules [5]. To address this issue, several
new stochastic population-based nature-inspired algorithms
have been proposed, that approach the rule mining process
as an optimization problem. Additionally, much attention
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has been devoted to the types of attributes being mined (i.e.
categorical and continuous).

The problem of the high computational complexity has
firstly been exposed by the usage of AI solutions in practise,
where, especially, large and computationally expensive deep
learning models produce a huge carbon footprint by increas-
ing the energy consumption [6]. The traditional AI methods
have recently been referred to as Red AI. Indeed, it increases
the carbon footprint, and is environmentally unfriendly and
energy consumptive. The modern sustainable AI, that is
referred to as Green AI, is distinguished by reducing the use
of hazardous materials, maximizing the energy efficiency,
and increasing the factory waste recycling [7].

In the context of stochastic population-based nature-
inspired algorithms, Evolutionary Algorithms (EAs), like
Genetic Algorithms (GAs), and Swarm Intelligence (SI)
based algorithms, like Particle Swarm Optimization (PSO),
which were often utilized for rule mining tasks, have been
adapted to mine numerical association rules efficiently [8],
[9]. These algorithms encode potential solutions as chro-
mosomes, allowing variation operators such as crossover
and mutation to refine the rule population iteratively.
By evaluating fitness functions based on support and
confidence measures, these approaches can identify signifi-
cant numeric associations effectively, while accommodating
numeric attributes’ inherent diversities. According to the
review papers in this field, GA and PSO algorithms are
the most promising nature-inspired algorithms for solving
these problems [10], RPSOA [11]. However, approaches are
also based on the Ant Colony Optimization (ACO) [12],
Bat algorithm (BA) [13], Cuckoo Search (CS) [14] and
Differential Evolution (DE) [15], among others. Even though
some algorithms work well on specific datasets, while others
work on different datasets, much attention is nowadays
given to developing new metrics that help obtain the most
appropriate association rules [5], [9].

Most of the reviewed literature focuses mainly on either
mining discrete or numerical rules. Also, most of the time,
the numerical attributes are discretized in the datasets used,
which leads to severe information loss and misinterpretation
of the produced rules. It also seems that all methods mine just
positive intervals of attributes’ domains, thus ignoring other
views of rules on the underlying hidden data. Additionally,
all the reviewed methods use a fixed length individual
representation, which means that each attribute can hold just
one specific value. This way of encoding means that different
intervals of the same attribute cannot be discovered. This
leads to not being able to find very strict and specific rules.

There are a handful methods in the literature which use
variable-length individual representations, amongwhich only
the following are used in Data Mining. In [16] the authors
used a Genetic Algorithm (GA) for mining AR in text
documents. Their method produces rules of different lengths
by sampling selected individuals randomly for crossover.
The method in [17] also utilized a GA for association rule

mining as a means of feature selection for spam detection.
Their idea for producing different length individuals lies
in three carefully adapted single-point crossover operators
which ensure feasible offspring. Another hybrid GA was
utilized in [18], where variable-length individuals were used
for optimizing fuzzy rules, with the aim of facilitating a
comprehensive quality assurance scheme in the garment
industry. During the rule optimization, different parameters
can be inserted or removed from a rule, increasing the
diversity of the generated fuzzy rules. A multi-objective
GA was used is [19] for fuzzy classification rule mining.
By representing fuzzy rules as concatenated integer strings
of variable length, the method maximizes accuracy and
minimizes complexity, enhancing the efficiency in rule set
generation significantly without compromising the results.

All the above reviewed methods operate on only discrete
attributes or utilize some form of discretization. They
generate new variable-length individuals using a variation
of a single-point crossover, which, while easy to implement,
necessitates changes made through the mutation operation.

With the drawbacks of the described state-of-the-art
methods in mind, this paper proposes a new Differential
Evolution (DE) algorithm [20] for Association Rule Mining,
based on a variable-length encoding of individuals, where
each individual encodes a separate association rule. The
variable-length encoding ensures that different intervals of
the same attribute can be selected, therefore, having the
ability to find very specific and interesting association rules.
The proposed methods is also able to mine positive and
negative intervals of specific attributes’ domains, which
enhances the quality of the results.

The proposed paper introduces the following key novelties:

• the new variable-length representation of individuals for
ARM that is Green AI ready,

• the development of the new variable-length Differential
Evolution algorithm for ARM (vDE_ARM),

• mining discrete and continuous rules without any form
of data preprocessing,

• considering either the mined intervals of continuous
attributes’ domains or their absolute complements.

Let us mention that the purpose of the study is also to develop
an MLmethod with foundations of Green AI in the sense that
the vDE_ARM finds the solutions in a much shorter time,
while their qualities are comparable.

The remainder of the paper is organized as follows:
Section II introduces the basic information needed for
understanding subjects that follows. The design and imple-
mentation of the proposed vDE_ARM is presented in Sec-
tion III. In Section IV, the experiments are illustrated, where
the vDE_ARM is applied for mining several transaction
databases, while the results encourage us to continue with
the development of this algorithm. Section VI summarizes
the results of the performed work and outlines potential
directions for the future development.
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II. MATERIALS AND METHODS
This Section captures the topics needed by potential readers
for the understanding subjects that follow. At first, a math-
ematical formulation of the ARM is presented briefly. The
section is concluded with a detailed description of the DE,
on which the mining of the Association Rules (AR) is based
in the present study.

A. ASSOCIATION RULE MINING
The ARM problem is defined mathematically as follows:
Let us suppose a set of attributes A = {a1, . . . , aM } and a
set of transactions T = {t1, . . . , tN } are given, where each
transaction is identified uniquely and contains a subset of
items ti ⊂ A (also itemset). Let us notice that M denotes the
number of attributes and N the number of transactions in the
transaction database. Then, an association rule is defined as
an implication:

X H⇒ Y , (1)

where X and Y are two itemsets and it holds that X ∩ Y = ∅.
Several interestingness measures have been defined for

identifying and evaluating the more important association
rules in the literature. However, the most commonly used are
Support and Confidence that are defined as follows:

Support(X H⇒ Y ) =
|ti|ti ∈ X ∧ ti ∈ Y |

N
, (2)

Confidence(X H⇒ Y ) =
Support(X ∪ Y )
Support(X )

, (3)

where Support(X H⇒ Y ) ≥ Smin denotes the support,
and Confidence(X H⇒ Y ) ≥ Cmin the confidence
of the association rule X H⇒ Y . Additionally, Smin
denotes minimum support and Cmin minimum confidence,
determining that only those association rules with support
and confidence higher than Smin and Cmin are taken into
consideration, respectively.

In some literature [21], the following additional metrics are
usually used:

Coverage(X H⇒ Y ) =
|ti|ti ∈ Y |

M
, (4)

Interestingness(X H⇒ Y ) = Confidence(X H⇒ Y )

∗
Support(X H⇒ Y )

Support(Y )

∗ (1 −
Support(X H⇒ Y )

N
).

(5)

Let usmention that the coverage and the interestingnessARM
metrics are also used in this research.

The mentioned measures estimate the mined association
rules differently, i.e., the support is defined as the proportion
of transactions in a transaction database containing the item
set X . On the other hand, the confidence is a conditional pro-
portion of finding the item set X under the condition that this
transaction also contains Y . The coverage metric estimates

the ratio between the number of the attributes used in the
specific AR, and all the attributes in the transaction database
M . The interestingness is used to measure how much the
rule is surprising for the user. In association rule mining, the
paramount objective revolves around discovering concealed
insights from the data. Assessing the interestingness of a rule
involves identifying not only the highly frequent rules but also
those with comparably lower occurrence in the database [22].
Indeed, the item set X represents the Left Hand Side (LHS),
while the item set Y the Right Hand Side (RHS) of the
association rule X H⇒ Y .

B. DIFFERENTIAL EVOLUTION
Differential Evolution (DE) is a population-based Evolu-
tionary Algorithm for continuous global optimization [20].
In its core, the DE algorithm is a simple, but very effective
heuristic for solving various real-life problems. The idea of
the DE algorithm is a mathematical model based on scaled
vector differences. The DE algorithm evolves a population
of vectors, through consecutive generations, denoted as g,
where each vector represents a solution of the problem, either
directly or indirectly. Normally, the DE population consists of
Np real-coded vectors that can be defined mathematically as
follows:

x(g)i = (x(g)i,1 , . . . , x(g)i,n ), for i = 1, . . . ,Np, (6)

where each element x(g)i,j lies within the interval

[x(L)j , x(U )
j ] for j = 1, . . . ,D. Vectors x(L) and x(U ) denote

the lower and upper bounds of the problem, variables while
D refers to the problem dimension. In each generation
all the vectors in the population go through a set of
evolutionary operators, namely, mutation, crossover, and
selection. By using these operators a trial vector is produced,
which competes with the current vector (i.e. parent) for
surviving into the next generation based on the fitness value.
The mutation operator is executed for every vector in the
population that yields a mutant vector, denoted as:

u(g)i = x(g)r1 + F · (x(g)r2 − x(g)r3 ) (7)

Thus, indices r1, r2, and r3 are selected randomly from
uniform distribution in the interval [1,Np], and are also
mutually exclusive integers different from index i, while F
is the scaling factor. Typically the scaling factor lies within
the interval [0.1, 1.0].

After generating the mutant vector u(g)i , a crossover is
performed according to the crossover rate Cr and the
corresponding vector x(g)i from the population as follows:

t (g)i,j =

{
u(g)i,j , if rand() ≤ Crorj = jrand ,

x(g)i,j , otherwise.
(8)

The crossover rate Cr , normally defined within the interval
[0, 1], controls the probability of modifying an element of the
trial vector u(g)i . Additionally, the jrand index ensures that at
least one value from the mutant vector u(g)i is modified in the
new trial vector t (g)i .

VOLUME 12, 2024 4241



U. Mlakar et al.: Variable-Length Differential Evolution for Numerical and Discrete ARM

The last operation is the selection, where the newly created
trial vector t (g)i competes with its parent for surviving into
the next generation. In the case of minimization, the selection
operator can be defined mathematically as:

x(g+1)
i =

{
t (g)i , if f (t (g)i ) ≤ f (x(g)i ),

x(g)i , otherwise.
(9)

Let us mention that the selection operator in DE is typically
denoted as one-to-one selection.

III. VARIABLE-LENGTH DIFFERENTIAL EVOLUTION FOR
ARM
A traditional approach to Evolutionary Association Rule
Mining uses a fixed length representation of individuals,
where the length is proportional to the number of attributes in
the used transaction database. Themain challenge in the study
is to design an algorithm for able to mine multiple intervals
of the same attributes’ domains without using very complex
representations of rules. With this in mind, we propose a
variable-length representation of a rule (i.e. individual in
the population), where the length is not influenced directly
by the size of the transaction database, but rather it is
learned throughout the evolutionary process by the algorithm
itself. Using this new rule representation, we expect that the
discovered rules will be much more precise, more interesting
(according to the commonly used metrics), and also cover the
whole spectrum of the underlying information of the mined
dataset.

The pseudo-code of the general EA is illustrated in
Algorithm 1.

Algorithm 1 Pseudocode of a Generic Evolutionary Algo-
rithm
1: function Evolutionary_Algorithm(Np,MAXFEs)
2: INITIALIZE_population
3: EVALUATE_each_candidate
4: while not TERMINATE_CONDITION_satisfied do
5: SELECT_parents
6: RECOMBINE_parents
7: MUTATE_offspring
8: EVALUATE_mating_pool
9: SELECT_survivors
10: end while
11: return BEST_individual
12: end function

fromwhich it can be seen that this consists of the following
components [23]:

• generation of initial population (function INITIALIZE in
line 2),

• evaluation of a solution (function EVALUATE in lines
2 and 8),

• parent selection (function SELECT_parent in line 5),
• crossover of the parents (function RECOMBINE in
line 6),

• mutation of the offspring obtained after crossover
(functionMUTATE in line 7),

• survivor selection (function SELECT_survivor).

To run correctly, the EA also needs an appropriate representa-
tion of individuals representing a solution of the problem to be
solved, and the termination condition determining conditions
for terminating the evolutionary cycle. Let us mention that the
general pseudo-code of the EAs is similar to the pseudo-code
of the general SI-based algorithms, but changing of the
particular particle (i.e., individuals in the EA) positions
in the problem search space is typically performed using
some nature-inspired equation (e.g., moving bee colonies, ant
colonies, bird flocks, etc.) in place of crossover and mutation
as by EAs.

Indeed, the new variable-length Differential Evolution for
Association Rule Mining (vDE_ARM) is introduced in this
Section. The proposed algorithm is able to extract rules
from transaction databases containing both numerical and
categorical attributes. The implementation of vDE_ARM
consists of modifying the following three key components
referring to the pseudo-code of the EAs (Algorithm 1),
to which the original DE also belongs:

• the representation of individuals,
• the definition of a fitness function.
• modifications of the other components of the
original DE.

The first component refers to modification of the original
DE algorithm, necessary to operate with variable-length
representation of individuals. Since a DE algorithm is used
for rule mining, the fitness function needs to be defined
in the second component, that enable us to find the more
interesting association rules. Finally, the variation operators
in the original DE must be redefined, in order to support the
variable-length representation of individuals.

Indeed, the mentioned modifications are universal, and can
be applied to any EAs or SI-based algorithms. Let us notice
that the proposed variable-length encoding is an integral
mechanism of the newly proposed DE algorithm. Obviously,
the operators of crossover and mutation are also modified in
order to consider the variable-length representation. Readers
are directed to the graphical representation of the vDE_ARM
in Fig. 1.

A. REPRESENTATION OF INDIVIDUALS
Each individual xi in a population is represented as a
real-valued vector of variable length, where each vector
encodes a separate rule in the so-called solution space (also
genotype space). The rule supports two kinds of attributes
in the problem space (also phenotype space), i.e., either
numeric attr (num)i,j or categorical attr (cat)i,j . Thus, each attribute
is encoded by four real-valued elements. In the genotype-
phenotype mapping [23], the vector is represented, in the
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FIGURE 1. Graphical representation of the vDE_ARM.

so-called genotype space, as follows:

x(g)i =

. . . .
〈
x(g)i,j,1, x

(g)
i,j,2, x

(g)
i,j,3, x

(g)
i,j,4

〉
︸ ︷︷ ︸

attr (num)i,j

, . . . ,

〈
x(g)i,j′,1, x

(g)
i,j′,2, x

(g)
i,j′,3, x

(g)
i,j′,4

〉
︸ ︷︷ ︸

attr (cat)
i,j′

, . . . ,
〈
x(g)i,|attr|+1,1

〉
︸ ︷︷ ︸

CPi

 ,

where the j-th element of the vector x(g)i,j represents the

mapping to the numerical, while the j′-th element x(g)i,j′

to the categorical attribute. Indeed, the vector x(g)i =

({x(g)i,j }, x(g)i,|attr|+1,1) consists of a set of 2-dimensional vectors

x(g)i,j for j = 1, . . . , |attr| with elements x(g)i,j,k for k =

1, . . . , 4 encoding the particular attribute of the association
rule, and the last element of the vector is a cut point that
determines which attributes belong to the antecedent and
which to the consequent parts of the encoded association
rule. The term |attr| denotes the number of attributes in the
observed association rule. Consequently, the length of the
vector in genotype space is determined by the expression
Di = 4 · |attr| + 1.
Obviously, the genotype-phenotype mapping is performed

differently, depending on the attribute types. Obviously, both
the numerical attributes attr (num)i,j = ⟨type, interval, compl⟩

and the categorical attributes attr (cat)i,j = ⟨type, item, reserved⟩

are mapped from the 2-dimensional vector x(g)i,j as illustrated
in Table 1.
A type of the attribute is determined simply, according to

the following expression:

type =

{
num, if x(g)i,j,1 ≡ 1,

cat, otherwise,
(10)

where the attribute type is determined by analyzing the values
of the feature in the transaction database.

Interval [lb, ub] of the corresponding numerical attribute
attr (num)i,j .interval is calculated according to the following
equation:

lb =

{
⌊
(
Ubj − Lbj

)
· x(g)i,j,2⌋, if x(g)i,j,2 < x(g)i,j,3,

⌊
(
Ubj − Lbj

)
· x(g)i,j,3⌋, otherwise.

(11)

and

ub =

{
⌊
(
Ubj − Lbj

)
· x(g)i,j,3⌋, if x(g)i,j,2 < x(g)i,j,3,

⌊
(
Ubj − Lbj

)
· x(g)i,j,2⌋, otherwise.

(12)

where the variables Lbj and Ubj denote the lower and upper
bounds of the feasible range for the particular numerical
attribute, respectively.

The absolute complement of the interval attr (num)i,j .interval
represents a set of those values that are not in the [lb, ub],
in other words, the absolute complement attr (num)i,j .interval is
the interval [Lbj, lb] ∪ [ub,Ubj]. The decision about taking
the interval or its absolute complement is made according to
the following equation:

interval =

{
[Lbj, lb] ∪ [ub,Ubj], if rand(0, 1) > x(g)i,j,4,

[lb, ub], otherwise.

(13)

As can be seen from the Eq. (13), the complement of the
original interval is taken into account, when the random
number drawn from uniform distribution in the range [0, 1]
is higher than the value of element x(g)i,j,4.
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TABLE 1. Genotype-phenotype mapping by vDE_ARM.

Similar as for a numerical attribute, the value of the cate-
gorical variable item is decoded from two elements of the 2-
dimensional vector x(g)i,j using a functionmap_cat(x

(g)
i,j,2, x

(g)
i,j,3)

that is defined as follows:

item =

x(g)i,j,2 + x(g)i,j,3

2
·
(
Ubj − Lbj

) + 1, (14)

where the average of two elements are scaled with the
total range of feasible values for the categorical attribute
j. Interestingly, the fourth elements of the vector are not
included into the decoding process, and, therefore, the
variable reserved is normally set to zero.

Finally, the cutoff point cpi, is calculated as:

cpi = ⌊xi,D+1 · (|attr| − 1)⌋ + 1, (15)

where |attr| designates the number of attributes in x(g)i . This
means that all identified attributes whose indexes are smaller
than cpi belongs to the antecedent, on the one hand, and all
the others to the consequent, on the other.

B. FITNESS FUNCTION EVALUATION
Since the proposed vDE_ARM belongs to the EA family of
algorithms, a metric needs to be determined for measuring
the quality of a rule (i.e. a fitness function). Several different
fitness functions can be found in the literature, varying from
very simple to complex. In this work, each mined association
rule X H⇒ Y obtained by genotype-phenotype mapping
x(g)i 7→ (X H⇒ Y ) is evaluated using the function:

f (X H⇒ Y )

=
α ∗ Confidence(X H⇒ Y ) + β ∗ Support(X H⇒ Y )

α + β
.

(16)

Factors α and β are used to assign weights to both the
confidence and support measures, which determine their
relative importance in the fitness function calculation. When
α is increased, the algorithm will prefer finding rules with
higher confidence levels. Conversely, increasing β will favor
rules with greater support. Depending on the particular use
case for data rule mining, the user has the ability to adjust
the weightings of both measures accordingly. In this study,
the weights of support and confidence were kept the same,
in other words α = β = 1.

C. MODIFICATIONS OF THE OTHER COMPONENTS OF
THE ORIGINAL DE ALGORITHM
The DE algorithm described in Section II-B is designed
to work with optimization problems where the solution

is of fixed length. Since the proposed method uses a
variable-length representation of individuals, several modifi-
cations of the original DE algorithm need to be made beside
introducing the variable-length representation and adapting
the fitness function. These modifications are summarized in
the remainder of this Section.

The first modification is made by the initialization of the
initial population. Each individual in the initial population
is constructed according to the following mathematical
expression:

x(0)i = (x(0)i,0 , . . . , x(0)i,Di ), (17)

where the length of each individual Di = N (M , 1) is drawn
from the normal distribution with mean M and Standard
Deviation one. Normally, the variableM denotes the number
of features in the mined transaction database. In this way,
it is possible that different intervals of a specific attribute are
selected, thus, making it possible for mining very specific
rules.

Since each population individual can be of different
length, the mutation and crossover operators also need to be
updated. The mutation operation is performed as follows:
The dimension of the mutant vector DMut needs to be
calculated first. This is done with the help of the mutually
exclusive selected set of population individuals, denoted as
S = {xr1 , xr2 , xr3}. The length of the mutant vector DMut is
selected randomly from one of the individuals from the set
xri ∈ S. This process is known under the name the mutant
dimension/length selection strategy.

Three different mutant dimension/length selection strate-
gies are experimented with, namely, the best fitness strategy,
the shortest length strategy, and the longest length strategy.
Using the best fitness selection strategy, the best individual
from the set S is selected according to the corresponding
fitness value, whereas using the longest/shortest strategy,
the longest/shortest individual according to the number of
attributes is used from the set S. This process can be expressed
mathematically as:

DMut =


length

(
max

i=1,...,3
f (xri )

)
, if strategy = ’fitness’,

min
i=1,...,3

length(xri ), if strategy = ’shortest’,

max
i=1,...,3

length(xri ), if strategy = ’longest’,

(18)

where the function f (xri ) denotes the fitness value, and the
function length(xri ) of three randomly selected individu-
als xri .
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The index of the vector, which is used for determining
the length of the mutant vector, is also used as the basis
vector in the mutation operation (i.e., x(g)r1 in Eq. 7). Thus,
the used mutating strategy can be regarded as a ‘DE/local-
best/1’ mutation strategy. The individuals, entering in the
scaled difference and adding to the basis individual (i.e., x(g)r2
and x(g)r3 in Eq. 7), need to be adjusted in length to support the
mutation operation. Both individuals are temporarily padded
randomly to match the length of the mutant vector if both are
shorter than DMut . On the other hand, if both individuals are
longer than DMut , they are cropped accordingly.

A new crossover operation also has to be developed
in order to operate on variable-length individuals, and
to produce different length trial individuals at the same
time. Firstly, the trial length has to be determined as
DTr = max(length(x(g)i ), length(u(g)i )), where the dimension
is referred to the longer individual among the target x(g)i
and mutant u(g)i vectors. The new target vector t (g)i is then
generated using the new crossover operator, which is defined
using the equation (19), as shown at the bottom of the page,
where j denotes the current attribute index. The variable-
length crossover defined in Eq. 19 ensures that different
length individuals are produced, and, at the same time, tries to
find the optimal size of the solution. Through generations, the
size of generated trial individuals is decreased slowly, which,
in turn, produces more optimal and interesting individuals
(i.e., association rules).

IV. RESULTS
This Section describes the experimental work which was
conducted during this study. The primary goal of the
experimental work was to show that the results of vDE_ARM
are comparable, if not better than, several other well
established EA and SI algorithms. Additionally, we wanted to
prove that comparable results can be obtained while using a
small number of function evaluations, and, thus, the algorithm
complies with the principles of Green AI. In line with this,
five experiments were conducted, in which we were focused
to the following objectives: (1) To discover the characteristics
of the vDE_ARM, (2) To study the impact of the starting
population size on the quality of the results, (3) To analyze the
influence of the number of fitness function evaluations, (4)
To compare the vDE_ARM with some selected SI-based and
EAs from theNiapy library using theNiaarm framework [24],
and (5) To investigate how the variable-length encoding of
the individuals impacts the results, and how does it affect
the search space in the process of rule optimization. In other

TABLE 2. Parameters of vDE_ARM for association rule mining.

words, the last experiment was designed to observe how the
rule lengths are changed through the typical run.

All the experiments were evaluated according to the
following five metrics: support, confidence, coverage, inter-
estingness, and fitness value of the rule. The setting of the
algorithms’ parameters is reviewed in the remainder of the
Section. Then, the experimental environment is described in
detail. The section concludes with illustrating the results of
the conducted experiments, to which also the discussion is
included, where these are analyzed from the critical point of
view.

A. ALGORITHM PARAMETER SETTINGS
It is important to emphasize that two distinct variants of
vDE_ARM were developed for the study: The original
variant, named as vDE_ARM1, focuses solely on the con-
sidering original intervals of the numerical attributes. On the
other hand, the modified variant, named as vDE_ARM2,
encompasses the capability to extract both intervals of
numerical attributes, i.e., the original and their absolute
complements, in particular association rules. With the
two defined vDE_ARM variants, the purpose of the first
experiment was to determine which variation of the observed
vDE_ARM achieved the better results. The better performing
variant was then considered in the next experiments.

The parameters for vDE_ARM, which were used during
the experimental work, are displayed in Table 2.

NiaARM [25], which is a pure Python framework for
mining Numerical Association Rules, was chosen in the
comparative study, since this software ensures reproducibility
due to its open source nature. NiaARM implements theARM-
DE algorithm, based on the original DE proposed in [15], but
can run with any of the arbitrary nature-inspired algorithms
from the NiaPy library [24].

B. EXPERIMENTAL SETUP
All the experiments were performed on a desktop computer,
with the following configuration:

• Intel(R) Core(TM) i9-10900KF CPU @ 3.70GHz,

t (g)i,j =


u(g)i,j , if( rand() ≤ Crorj = jrand ) and j ≤ length(u(g)i ),

x(g)i,j , if rand() > Cr and j ̸= jrand , and j ≤ length(x(g)i ),

u(g)i,j , if j ≥ length(x(g)i )orj < length(u(g)i ),

x(g)i,j , if j ≥ length(u(g)i )orj ≤ length(x(g)i ),

(19)
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• RAM: 65 GB,
• Operating system: Linux Ubuntu 22.04 Jellyfish.

The vDE_ARM algorithm was implemented using the
Python programming language.

The UCI ML datasets [26], listed in Table 3, were used
for evaluating the performance of the vDE_ARM. The
characteristics of each database are presented in terms of the
number of transactions, attributes and attribute types. The
attributes can be either categorical (discrete) or numerical
(real). Since the vDE_ARM is able to process discrete and
numerical attributes, no additional preprocessing needs to be
performed in order to obtain transaction databases.

We can also point out that the databases are very colorful,
as they contain a different number of transactions and
attributes. There are databases that have a large number
of transactions and databases containing a large number of
attributes. Indeed, those databases are included into the study
that include attributes of different types.

C. RESULTS
In this Section, we present a comprehensive analysis of
the results obtained by the application of vDE_ARM. It is
important to note that two distinct variants of vDE_ARM
were considered during the experimental work, referred to
as vDE_ARM1 and vDE_ARM2, where the former algo-
rithm considered solely the original intervals of numerical
attributes, while the latter also the absolute complements of
their original intervals.

The following experiments were performed:

• comparison of the results between the vDE_ARM2

and vDE_ARM1 (the better variant will be used in all
successive experiments),

• the influence of the population size on the obtained
results of the better performing vDE_ARM variant,

• the influence of the number of fitness function evalu-
ations on the obtained results of the better performing
vDE_ARM variant,

• comparison of the results of the better vDE_ARM
variant with the results of the Evolutionary Algorithms
from the NiaArm framework,

• analysis of changing the rule length during the evolu-
tionary run.

In the remainder of the Section, the results of the conducted
experiments are illustrated in detail.

The best overall results were obtained empirically, when
using the best fitness selection strategy as indicated from our
extensive experimental work.

1) COMPARISON OF VDE_ARM1 AND VDE_ARM2

The goal of the experiment was to determine, which of the
developed two variants of vDE_ARM produced the better
results. Both variants were compared over 30 independent
runs by mining the 14 transaction databases preprocessed
from UCI ML datasets according to the following ARM

metrics obtained by averaging the corresponding values over
30 runs for each dataset:

• average number of generated rules (#avgRules),
• average support (avgSupport),
• average confidence (avgConfidence),
• average coverage (avgCoverage),
• average interestingness (avgInterest),
• average fitness (avgFitness).

The results of mining using both variants of the vDE_ARM
algorithm at Np = 15 are presented in Table 4, where the
best results for each transaction database are emboldened.
The population size Np = 15 was chosen, since we wanted
to show that the proposed vDE_ARM was capable of finding
meaningful and interesting rules, even with the lower values
of the population size Np and the maximum number of
fitness function evaluations MAXFEs. The Table illustrates
the average metrics obtained by the specific algorithm on the
particular dataset. The last two rows in the Tables (column
‘Total’) indicate the average values of the corresponding
metrics.

The following conclusions can be summarized from
Table 4: At first, both vDE_ARM variations generated
roughly the same number of association rules, although over
30 runs, on average, the vDE_ARM2 was able to produce
more rules on three datasets, whereas vDE_ARM1 on twelve.
It is objectively hard to assess if more rules dictate the
better performance directly. Furthermore, these rules also
tend to be longer in the sense of the number of attributes.
It is well-known that the longer association rules are often
more complex and difficult to interpret than their shorter
counterparts.

Additionally, it is evident that the rules produced by
vDE_ARM1 had lower support than those generated by
vDE_ARM2, in general. This suggests that the former
may yield rules that are less interesting from a practical
standpoint. Moreover, the values of the other statistical
metrics (i.e., ‘avgSupport’, ‘avgConfidence’, ‘avgCoverage’,
‘avgInterest’, ‘avgFitness’) in the Table are considerably
lower for vDE_ARM1 in most cases. Considering these
findings, it is apparent that the vDE_ARM2 outperformed
the results of the vDE_ARM1 in terms of generating more
concise and meaningful association rules with higher support
and confidence, and, therefore, this was observed in the
experiments that followed.

In summary, the frequencies of the best ranks obtained
by both variants of the vDE_ARM with the population size
Np = 15 and small number of fitness function evaluations
MAXFEs = 2000 are illustrated in Table 5. As can be seen
from Table 5, the vDE_ARM2 yielded the better results by
observing almost all the average metrics, except the metric
‘avgRules’.

2) INFLUENCE OF THE POPULATION SIZE
The purpose of the study was to analyze the effect of the
population size Np on the quality of mined rules measured
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TABLE 3. Datasets used in the study. The abbreviations for attribute types are: D (discrete), N (numerical).

TABLE 4. Comparison of vDE_ARM2 and vDE_ARM1 at Np=15 and MAXFEs=2000. The reported results are averages of 30 individuals runs.

by six statistical metrics. This study was performed using
the better performing vDE_ARM variant (i.e., vDE_ARM2),
where the parameter population size was varied in the
interval Np = {5, 10, 15, 20, 30, 50, 100}. Thus, six different
instances of the algorithm were observed. The results of this
experiment are presented in Table 6, where the frequencies,
denoting the best ranks of the corresponding ARM metrics
as obtained by mining each of the observed 14 datasets, are
attached according to various population sizes.

As can be seen from Table 6, the bigger the pop-
ulation size Np, the higher the number of discovered
rules. Indeed, these results are expected since the bigger

initial population sizes allow examining the huge fit-
ness landscape, and, consequently, discovering the better
results [23]. The ARM metric Confidence has more impact
on the fitness function value than the Support , as can
be seen from calculating the Spearman correlation coeffi-
cient, because r(avgConfidence,avgFitness) = 0.889 >

r(avgSupport,avgFitness) = 0.853.
Friedman tests [27] were employed in order to assess the

statistical significance of the obtained results. The Friedman
test is a two-way analysis of variances by ranks. In the first
step, test statistics are calculated and converted to a rank.
In the second step, post-hoc tests are conducted using these
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TABLE 5. The frequencies of the best ranks obtained by both vDE_ARM variants. The reported results present the averages for 30 individual runs.

ranks. It is worth noting that lower rank values indicate better
algorithm performance [28]. The second step of the analysis
is performed only if the null hypothesis of the Friedman test
is rejected, which assumes equal medians between the ranks
of all algorithms [29].

According to Demšar [30], the Friedman test remains a
reliable and robust non-parametric method for comparing
multiple algorithms across various datasets. When combined
with the corresponding Nemenyi post-hoc test, it facilitates a
clear presentation of the statistical outcomes [31]. However,
one limitation of the Friedman test is its inability to
establish proper comparisons between some of the considered
algorithms, due to the large number of multiple comparisons
made over datasets [28].

To address this issue, a Wilcoxon two-paired non-
parametric test [32] was applied as a post-hoc test after
determining the control method (i.e., the algorithm with
the lowest rank) using the Friedman test. The Nemenyi
test, while conservative, may not detect differences in
most of the experimental scenarios [28]. In contrast, the
Wilcoxon test, preferred by Benavoli et al. [33] over post-hoc
tests based on mean-ranks, offers greater statistical power.
Consequently, in this study, the Nemenyi test is used for
graphical presentation of the results, while the Wilcoxon test
wass deemed more effective. Both tests were conducted with
a significance level of α = 0.05.
The conducted statistical tests encompassed the outcomes

of discovering/mining association rules for all of 14 consid-
ered UCI ML datasets. In essence, the comparison involved
three classifiers (i.e., the results obtained with different
population sizes) based on 210 elements. The classifier’s
size was derived from the product 3 × 5 × 14, where the
first number represents the number of metrics considered
(i.e., support, confidence, and fitness value), the second
denotes the number of statistical measures taken into account
(i.e., mean, Standard Deviation, minimum, maximum, and
median), and the third indicates the total number of the UCI
ML datasets used in the study.

The results of the Friedman non-parametric tests are
displayed graphically in Fig. 2 and numerically in Table 7.
The results of the Nemenyi post-hoc test are represented
as critical difference intervals, where the results of two
algorithms are statistically significant if their critical dif-
ference intervals do not overlap. To identify the best
algorithm, the Friedman test’s outcome was used as the
control method. Subsequently, all the other algorithms were
compared to this control method using the Wilcoxon two-
paired non-parametric test. The results of the Wilcoxon
test are depicted through corresponding p-values, where a

FIGURE 2. Graphical representation of the Friedman critical distances for
the population size study on vDE_ARM2.

significant difference between two algorithms is indicated
when p < 0.05. In Table 7 the best algorithm identified by
the Nemenyi post-hoc test and the control method from the
Wilcoxon test are denoted with the ‡ symbol. Moreover,
the presence of a significant difference between the control
method and the corresponding algorithm is represented by the
† symbol.

The Nemenyi post-hoc test results are presented visually
through corresponding diagrams. Each diagram displays the
average ranks represented by squares, while lines indicate the
confidence intervals (critical differences) for the algorithms
being compared. Lower rank values signify better-performing
algorithms.

The Friedman test determined that the vDE_ARM2 with
population size Np = 15 was the best choice at MAXFEs =

2000, since the lowest rank was obtained by this parameter
setting. This same fact was also confirmed with theWilcoxon
test, where significantly better results were obtained when
compared to the results of the same algorithm using the other
population sizes, except for Np = 10 and Np = 20.

3) INFLUENCE OF THE FITNESS FUNCTION EVALUATIONS
The purpose of this study was to identify the effect of
the maximum fitness function evaluations MAXFEs on the
quality of the obtained rules yielded by vDE_ARM2 by a
fixed population sizeNp. Two different population sizes were
employed in the experiments, i.e., Np = 15, and Np = 100.
The former population size was determined to be the best
by the selected small number of fitness function evaluation
MAXFEs = 2000 in the last experiment, and allowed
vDE_ARM2 to converge fast. The latter represents the
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TABLE 6. The frequencies of the best ranks obtained by vDE_ARM2 with the various population sizes. The reported results present averages for
30 individual runs on 14 selected UCI ML datasets.

TABLE 7. Friedman and Wilcoxon statistical tests for the population size
study on vDE_ARM2.

FIGURE 3. Results of Friedman non-parametric statistical test by varying
the maximum function evaluations for vDE_ARM2 with Np = 15.

standard setting of this parameter by DE the community and
allows the search space to be explored in more detail. On the
other hand, the parameterMAXFEs was varied in the interval
MAXFEs = {2000, 5000, 10000, 20000, 50000, 100000}
in this experiment. Thereby, six different instances of the
algorithm were observed for a particular population size.

The results of the first experiment are gathered numerically
in Table 8 and graphically in Figure 3.
The results in both, i.e., Table 8 and Figure 3, indicate that

the best association rules by vDE_ARM2 with population size
Np = 15 were mined when the number of fitness function
evaluations was set to MAXFEs=5000. The results were not
significantly different, only when this parameter was set to
MAXFEs=2000. This means that the selected population size
MAXFEs=2000 was underestimated in the first experiment.
The same setting of these parameters yielded results that were

TABLE 8. Friedman and Wilcoxon statistical tests by varying the
maximum fitness function evaluations for vDE_ARM2 with Np = 15.

also significantly different for all the other various settings of
the parameter. This fact was expected in some way, since a
lower population size tends to converge faster. Consequently,
the algorithm probably either reached convergence or started
discovering uninteresting rules in the later stages of the
evolutionary process by using the higher values ofMAXFEs.
The results of the vDE_ARM2 with the population

size Np = 100 and the maximum number of fitness
function evaluations varied in the interval MAXFEs =

{2000, 5000, 10000, 20000, 50000, 100000} are illustrated
graphically in Figure 4 and numerically in Table 9. For the
selected population size, the best results were obtained by
the vDE_ARM2 with the highest MAXFEs = 100000. This
evidence was also expected, since the larger pool of candidate
solutions were explored and also slower convergence was
achieved. This gives the vDE_ARM2 search process the
necessary time to examine the fitness landscape thoroughly,
and to discover meaningful and important rules. According
to the Wilcoxon test, all the variants of vDE_ARM2 with the
otherMAXFEswere significantly different from the observed
best result.

4) COMPARISON OF THE BEST VDE_ARM VARIANT WITH
EVOLUTIONARY ALGORITHMS FROM THE NIAARM
FRAMEWORK
The purpose of this experiment was two-fold: (1) To analyze
the runtime of the proposed vDE_ARM2 with respect to
the quality of the obtained results, (2) To compare the
performance of vDE_ARM2 with the selected NI algorithms
taken from the NiaARM framework.

The goal of the first part of the experimental study was to
develop a Green ML method, which will be able to compete
with recent approaches in the sense of lower computational
cost, and, indirectly, the lower carbon footprint. In line with
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FIGURE 4. Results of the Friedman non-parametric statistical test by
varying the maximum function evaluations for vDE_ARM2 with Np = 100.

TABLE 9. Friedman and Wilcoxon statistical tests by varying the
maximum fitness function evaluations for vDE_ARM2 with Np = 100.

this, two variants of vDE_ARM2 were considered utilizing
the following parameter setups:

• Green vDE_ARM2: using Np = 15 and MAXFEs =

2000,
• Red vDE_ARM2: using Np = 100 and MAXFEs =

100000,

The first variant (denoted as Green) is more suitable for
computers of limited resources (e.g., microcomputers), while
the second one (denoted as Red) demands full computational
resources.

The run times of both methods in seconds are summarized
in Table 10, along with all the other observed metrics. It can
be concluded that the Green vDE_ARM2 was able to achieve
very similar results compared to the Red vDE_ARM2 in
a much shorter time. In fact, there was a nearly 3,300 %
decrease in computational time. The only metric which
performed worse was the number of obtained ARs. However,
this was expected, since a larger search space can be traversed
when using more function evaluations. The obtained rules
with the Red vDE_ARM2 were also analyzed manually.
The results of the analysis showed that many very similar
ARs were produced by the vDE_ARM2, whereas just small
changes appeared in the boundaries of specific attributes.

In the second part of the experimental study, the results
of vDE_ARM2 were compared with the results obtained by
several selected SI-based and EAs from the NiaARM frame-
work [24]. The selected algorithms were Differential Evo-
lution (DE) [20], Particle Swarm Optimization (PSO) [34],

FIGURE 5. Graphical representation of Friedman critical distances for the
comparison study of vDE_ARM2 with the NiaARM framework
(Np = 15, MAXFEs = 2, 000).

Bat Algorithm (BA) [35], Cuckoo Search (CS) [36], Genetic
Algorithm (GA) [37], [38], Success-History based Adaptive
DE (SHADE) [39], and Success-History based Adaptive DE
using Linear Population Size Reduction (LSHADE) [40].
All the selected algorithms in the comparative study were
used with their default parameter settings as provided by
the NiaARM framework. Although Fitness-Distance Balance
(FDB) meta-heuristics algorithms were also taken into
consideration [41], they were not included into our study
since these are implemented in MatLab, and, thus, not the
best from the performance point of view. On the other hand,
the experiments revealed that the better algorithms in solving
global optimization problems are not also better at solving
the ARM problems. The only parameter that was adjusted
was the population size, set toNp = 15. Each algorithm in the
comparison was executed 30 times, so all the reported results
are an average of 30 runs. The maximum number of function
evaluations was set to MAXFEs = 2000 and MAXFEs =

100000 similar to the vDE_ARM2. The special parameters
of GA were set as follows: the probability of crossover pc =
0.25, and the probability of mutation pm = 0.25..

The statistical results of comparing algorithms for settings
Np = 15 and MAXFEs = 2000 are collated in Table 11
and Figure 5, while for the settings Np = 15 and
MAXFEs = 100000 in Table 12 and Figure 6. In both tests
the proposed vDE_ARM2 obtained the highest rank using
the Friedman test, while also performing significantly better
when comparing algorithms according to the Wilcoxon test.

It is worth mentioning that each rule, which was generated
within the NiaARM framework andwas also feasible, was put
in the final archive, so, by design, many very similar rules
could be generated. Our approach was somewhat different.
Although also all feasible rules were being used, they were
put in the final archive after each passed generation. Let us
emphasize that this means that the proposed method will
always generate a lower number of rules compared to the
NiaARM framework.
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TABLE 10. Comparison between the red and green vDE_ARM2.

TABLE 11. Friedman and Wilcoxon statistical tests for the comparison
study of vDE_ARM2 with the NiaARM framework
(Np = 15, MAXFEs = 2000).

FIGURE 6. Graphical representation of Friedman critical distances for the
comparison study of vDE_ARM2 with the NiaARM framework
(Np = 15, MAXFEs = 100, 000).

The biggest difference between the vDE_ARM2 and the
comparison methods is in the number of generated rules. The
difference emerged from the fact that all feasible candidate
rules were added in the final archive in the competing
methods. It is also apparent that the proposed vDE_ARM2

could consistently find rules, even on the harder datasets (with
a large number of attributes), whereas the other algorithms in
the comparative study often failed.

The runtime of the Green vDE_ARM2 variant was also
compared to the runtimes of the NI algorithms from the
NiaARM framework. All the algorithms in the study were
run using the same parameters as the Green vDE_ARM2

(i.e., Np = 15 and MAXFEs = 2000). The results of this
comparison are collated in Table 13, which show that the
Green vDE_ARM2 was able to provide the best results by
considering all the statistical metrics, in much less time.

TABLE 12. Friedman and Wilcoxon statistical tests for the comparison
study of vDE_ARM2 with the NiaARM framework
(Np = 15, MAXFEs = 100000).

It seems that the comparing BA algorithm obtained fairly
good results, when compared to vDE_ARM2, mainly because
of its advanced exploration evolutionary operators.

5) RULE LENGTH SIZE CHANGING THROUGHOUT THE
EVOLUTIONARY PROCESS
The goal of this experiment was to demonstrate how the
lengths of individuals change during the evolutionary process
in regard to variable-length encoding. Figure 7 illustrates the
variations in rule sizes across successive generations for each
experimental dataset for vDE_ARM2. Themean and standard
deviation (std) of 30 independent runs were calculated for
each generation. The findings revealed that at the initial
stages of the evolutionary process, the generated rules
exhibit similar lengths (low std) and encompass numerous
attributes. However, as the evolutionary search progresses,
the discovered rules tend to possess different lengths (high
std) and involve a reduced number of attributes. These
outcomes suggest that the proposed vDE_ARM2 algorithm,
initially explores longer and more general rules. Yet, as it
advances further in the evolutionary process, it tends to
discover more intricate and specific rules.

V. DISCUSSION
The obtained results prove that the proposed vDE_ARM
(specifically the vDE_ARM2 variant) was successful in
obtaining good, and quality AR. The proposed method
was demonstrated to be more efficient than the comparison
algorithms in the NiaARM framework in almost all aspects.

Notwithstanding, it can be said that an advantage of our
method is in its straightforward structure, and the use of
simple evolutionary operators. Additionally, unlike some
other optimization algorithms, the vDE_ARM algorithm,
as an integral part of the evolutionary ARM, has only two
parameters (i.e. parameters Np and MAXFEs). Undoubtedly,
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TABLE 13. Comparison between the green vDE_ARM2 and the Niaarm framework.

FIGURE 7. Rule size changes through generations for vDE_ARM2.

the advantage of using the vDE_ARM algorithm for ARM
instead of other EAs is in its ability to maintain a diverse
population of vectors easily. Namely, the newly created
solutions participate in the creation of trial solutions instantly.
This ensures an elitism within the reproduction. By ARM,
this means that good rules will be discovered early, and that
the search process is continued within the neighbourhood
of those rules in subsequent generations of the vDE_ARM
algorithm. Also an important part of the vDE_ARM is
its ability to produce rules, which can contain different
numerical attribute intervals.

It can also be stated that the population size has a
significantly notable effect on the quality of the mined rules
using the vDE_ARM2 algorithm. This is evident from the
statistical results in Tables 6 and 7. Using a lower population
size means that the evolutionary search process will focus
more on the local neighborhood of good solutions (rules),
whereas a bigger population size will put more rules with a

low fitness value in the archive. Thus it can be concluded
that the lower population size is favorable when using the
vDE_ARM algorithm.

The experimental work also indicated, that increasing
the maximum number of function evaluations, does not
necessarily mean better results. This fact is evident by
observing the results in Table 8, where the lower value of
MAXFEs is also a better choice with respect to the Green AI
directive (see results in Tables 10 and 13).

When the results of the proposed vDE_ARM2 were
analyzed from the stability analysis point of view [42], where
these are estimated according to metrices, like Success Rate
(SR), Mean Fitness Evaluation number of success solutions
(MFE), andMean Computation Duration of success solutions
(MCD), we established that the NARM problem does not
have only one unique solution. This means that there can
be more successful solutions distinguished between each
other by various NARM metrics. Consequently, we cannot
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use the proposed metrics to analyze the stability of the
obtained results due to absence of the best solution. As a
result, we are interested in the quality solutions estimated
regarding, e.g., support or confidencemetrics, found as fast as
possible. In line with this, the proposed vDE_ARM2 fulfills
the posted demand completely. Furthermore, we showed
that the integrated mechanism for variable-length individual
encoding and representation is beneficial, since the proposed
algorithm also outperformed the more recent state-of-the-
art algorithms like Shade and L-Shade. In general, the
implemented mechanism built into either an evolutionary or
SI-based algorithm improves the results by solving ARM
problems more than using the more sophisticated algorithm.

A shortcoming of the proposed vDE_ARM is undoubtedly
in its inability to produce more feasible rules during the
evolutionary process, although being very close in the
genotype space. The reason lies in many critical sanity checks
when evaluating each rule. For example, with the proposed
variable-length rule encoding, it can happen that an attribute
is selected for both the antecedent and the consequent, which
is illegal.

VI. CONCLUSION
The novel vDE_ARM2 algorithm for mining association
rules was presented in this paper. The proposed representation
of the association rules support mining negative and positive
intervals of the numerical attributes, while also being able to
work with discrete attributes. The produced association rules
are interesting and simple, while offering good coverage of
the datasets. The rules are evaluated using a single-objective
fitness function, by using a weighted sum of support and
confidence metrics. The weights can be adjusted by the users,
giving them the total control over the importance of said
measures in finding rules.

The proposed vDE_ARM was tested on several publicly
available UCI ML datasets, and compared to several nature
inspired algorithms, which are available in the NiaARM
framework. The experiments show promising results com-
pared to other nature inspired algorithms, based on the used
evaluation metrics, and also provide interesting rules which
include a low number of attributes. Last but not least, the
algorithm complies with the principles of Green AI in the
sense of quickly finding a solution and, thus, reducing the
calculation complexity that is connected with the higher
energy consumption and indirectly also the increased carbon
footprint.

For the future work, we would like to test the proposed
method on larger UCI ML datasets, perform a study of
parameter settings of the algorithm on the quality of the
mined rules based on the new objective functions.
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