
Proc. of International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA 2024)
1-2 February 2024, Victoria-Seychelles

Profiling the carbon footprint of performance bugs
 Iztok Fister Jr.

University of Maribor
Maribor, Slovenia

iztok.fister1@um.si

 Dušan Fister
University of Maribor

Maribor, Slovenia
dusan.fister@um.si

 Vili Podgorelec
University of Maribor

Maribor, Slovenia
vili.podgorelec@um.si

Iztok Fister
University of Maribor

Maribor, Slovenia
iztok.fister@um.si

Abstract—Much debate nowadays is devoted to the impacts
of modern information and communication technology on global
carbon emissions. Green information and communication tech-
nology is a paradigm creating a sustainable and environmentally
friendly computing field that tries to minimize the adverse effects
on the environment. Green information and communication
technology are under constant development nowadays. Thus, in
this paper, we undertake the problem of performance bugs that,
until recently, have never been studied so profoundly. We assume
that inappropriate software implementations can have a crucial
influence on global carbon emissions. Here, we classify those
performance bugs and develop inappropriate implementations
of four programs written in C++. To mitigate these simulated
performance bugs, measuring software and hardware methods
that can estimate the increased carbon footprint properly were
proposed.

Index Terms—carbon footprint, green computing, performance
bugs, software engineering

I. INTRODUCTION

We find ourselves in an era marked by turbulence, where
the ominous specters of global warming and excessive carbon
emissions loom large in our collective consciousness [1]. Many
scientists have long sounded the alarm about the urgent need
to curb these emissions to avert catastrophic consequences.
However, despite the multitude of dire projections, political
movements worldwide often fall short in their efforts to
mitigate the impact of global warming effectively [2].

Modern humans and novel economic systems play a pivotal
role in exacerbating the carbon footprint. On one hand, we
engage in activities such as deforestation, construction on
valuable land, the proliferation of supermarkets, while, on the
other, in the extensive use of automobiles and airplanes [3],
[4]. Moreover, it has become increasingly evident that In-
formation and Communication Technology (ICT), which we
rely upon heavily, contributes significantly in increasing the
carbon emissions. Considering the vast number of data centers
scattered across the globe [5], as well as the multitude of
machine learning models running incessantly [6], it becomes
clear just how profound our environmental impact can be. In
addition to all these examples, the personal computers are
using electricity, and potentially contribute in increasing the
carbon emissions [7].

This work was supported by the Slovenian Research Agency [Research
Core Funding No. P2-0042 and No. P2-0057].

Corresponding author: Iztok Fister Jr. (e-mail: iztok.fister1@um.si).

The task of Green ICT is to mitigate the carbon emissions
of ICT production, applications, and services [8]. It holds
that the ICT systems nowadays produce even 2 % of global
emissions [9]. The reduction of carbon emissions comes out
either directly from the hardware, or directly and indirectly
from the software. Indeed, the carbon emission is measured as
a Carbon Footprint (CF) that is proportional to the amount of
trees needed to absorb the emitted carbon dioxide in a year [8].

Several publications have tackled the challenge of enhancing
the sustainability of ICT and its associated processes. In
a paper authored by Taina [8], a comprehensive approach
was presented for analyzing the carbon footprint associated
with software. This study examined each phase of a typical
software lifecycle meticulously, quantifying the carbon emis-
sions generated at each step. Additionally, the author shared
insightful strategies aimed at minimizing this carbon footprint.
Conversely, in paper [9], the authors introduced a systematic
methodology for quantifying the carbon footprint of a soft-
ware product throughout its entire lifecycle. Furthermore, they
proposed a method for incorporating certain facets of carbon
footprint assessment seamlessly into the software development
process. The paper also delves into the implications and tools
associated with this innovative calculation approach. Thus, this
work underscores the significance of energy metrics, and the
consideration of carbon footprint implications within the realm
of Green Software Engineering.

Performance bugs are unnecessarily inefficient code chunks
in software that can cause prolonged execution times and
degraded resource utilization [10]. For instance, an execution
time of a program calling a function each time it needs in place
of referencing the variable storing the result of the calling
function can increase its execution time substantially. The
execution time is increased proportionally to the number of
function calls.

The impact of the unnecessary inefficient code chunks has
rarely been taken into consideration, especially in the sense
of Green ICT. The purpose of the study is to observe the
well known performance bug in C++ referring to a vector
class, and to show how its inefficient usage can increase the
energy consumption (indirectly also carbon emission) of the
corresponding algorithm. Vector in C++ reallocates memory
when the new elements are added, and no memory is avail-
able to hold them. The reallocation would cause significant

979-8-3503-9452-8/24/$31.00 ©2024 European Union

296

performance degradation if this occurs too often [10].
To simulate performance bug, four different versions of an

algorithm were developed that manipulate the big number of
elements, either in the vector class or the double linked list.
All the algorithms were executed on three different platforms
(i.e., a laptop, a Raspberry Pi 3 microcomputer, and an iPad
table computer), and compared with each other according to
the increased energy consumption measured, depending on
the platform either using the Linux system software tool or
a power meter capable of measuring the energy consumption
on the hardware level.

The motivation of the study was three-fold:
• Identifying the performance bugs in software or inap-

propriate implementation that can have a great influence
toward the carbon emission.

• Investigating the influence of the iteration performance
bugs on the increased carbon emission by results of
four simulation programs developed in C++ programming
language.

• Searching for methods of how to measure the influence
of performance bugs.

Although it can be found three performance bugs in the
literature [10] (i.e., iteration, enumeration, and deadlock per-
formance bugs), here, we are focused on the first kind only.
As a result, the main contributions of the study are as follows:

• Simulating the performance bugs by four different algo-
rithms written in C++.

• Measuring an increasing carbon footprint caused by the
simulation.

• Showing that the proposed measuring methods can be
applied to estimate the increased carbon footprint due to
the simulated performance bugs.

In general, the main novelty of the proposed method is to
link the identification of performance bugs with measuring
the increased carbon footprint they cause. Thus, the domain
of software engineering is integrated with the domain of green
computing.

The structure of the paper is as follows: Section II discusses
potential ways in which to measure the carbon footprint
on various digital computers. In Section III, the concept of
performance bugs is explained briefly. The performed experi-
ments and the obtained results are the subjects of Section IV.
Section V concludes the paper and outlines the plausible
directions for the future work.

II. MEASURING THE CARBON FOOTPRINT OF COMPUTERS

A carbon footprint is the amount of greenhouse gases
(e.g., carbon dioxide and methane) that are generated by our
actions [11]. The carbon footprint is measured in units of
CO2 per unit (CO2e). Actually, most things in the world con-
tribute to carbon emissions, i.e., has its carbon footprint [12].
Electricity belongs today to the primary source of energy.
Moreover, energy consumption is increasing crucially. As the
production of electricity increases, the carbon emissions rise
simultaneously. However, electricity can be produced based on

different sources (e.g., coal, oil, gas, nuclear and renewable)
that contribute a different level of carbon emissions. For
instance, the low-carbon sources, like nuclear and renewable,
are more environmentally friendly than the coal that belongs
to the high-carbon sources.

Typically, each country produces electricity from sources
of different levels of carbon emissions. Therefore, the carbon
footprint of electricity varies from country to country. The
carbon footprint for electricity in the United States is estimated
to be 0.65 kg CO2e.

The energy consumption needs to be estimated in order
to determine the carbon footprint of computers. Although
the electricity is not the only source of carbon emissions by
computers [12], it is a good approximation for calculation of
the carbon footprint. Indeed, there are two ways to determine
the energy consumption of computers, i.e., software and hard-
ware tools. However, the known software tools only measure
power consumption on laptops when running on a battery.
On the other hand, for desktop or server machines the only
current solution is an electronic power-meter that plugs into the
mains socket. In our study, the powertop utility was examined
among the software tools, and the AVHzY ct-3 power-meter
among the hardware tools. The characteristics of both tools
are discussed in the remainder of the paper.

A. Powertop utility on Linux

The purpose of the powertop utility is to analyze and
manage power consumption on laptops using battery power.
The tool is able to display and export reports about the
estimated discharge rate, and statics about processors, devices,
kernel, timer, and interrupt handler behavior. It also lets us tune
some kernel parameters easily on the fly, in order to maximize
the battery life.

Before operating the tools needs to be calibrated, where,
during the process, the power engine adjusts to the specific
computer environment in order to take the accurate power
measures. In operation mode, the laptop must be on battery
power only. The powertop takes measurements at 20 seconds
intervals by default. Obviously, the interval can be set arbi-
trarily by the user.

Indeed, the process of discharging the battery is strongly
non-linear. Consequently, measurements taken at full battery
capacity under a similar strain can differ from those taken
when the capacity of the battery is not full. As a result,
we need to ensure that the battery is at full capacity at the
beginning of each experiment.

B. Power meter AVHzY CT-3

A power-meter measures electrical power in Watts. For mea-
suring computer power, electronic Watt-meters are used that
are capable of small power measurements, or of power mea-
surements at frequencies beyond the range of dynamometer-
type instruments.

The AVHzY CT-3 power-meter (Fig. 1) measures active
electrical power while connected directly to the electricity
network, and works in 0 − 26 V of voltage and 0 − 6 A

297

Fig. 1. Power meter AVHzY ct-3.

of current ranges. The device is connected to the electricity
network via a 230 V plug adapter with a USB port. It measures
the consumer that is connected to it via an output USB port.
Furthermore, the power-meter also enables connecting the
external power via a USB-C input port.

The main advantage of the power-meter is represented by
the USB-C output port, to which the personal computer can
be connected, on which the powerful PC software can be
installed for monitoring power consumption simultaneously.
The software is dedicated for data logging up to 1000sps,
viewing the VBUS ripple, and diagnosing the devices. Using
this PC software, the power consumption can be monitored
online at a high level of accuracy.

III. PERFORMANCE BUGS

Performance bugs typically increase the time complexity
of the algorithm due to coding the inefficient code chunks.
Obviously, this inefficient coding is programmed by the pro-
grammer unintentionally, but has a crucial impact on the
performance behavior of the algorithm. For instance, alloca-
tions of heap memory are performed with a malloc function
in standard C and with new function in C++. If low-level
system allocations are needed, the custom allocators, e.g.,
kalloc in Linux kernel, or ALLOC and xmalloc in gnulib, are
available for vector reallocation. Consequently, performance
improvements are clearly observable by calling the low-level
allocation function.

In order to show, how the performance bugs affect the
performance of the algorithm, different applications of the
vector class in C++ were taken into consideration. Indeed, the
memory is allocated on demand by the class, and is deallocated
at the very least when the vector’s destructor is called. When
no memory is available to hold the new allocated elements in
a heap, the vector in C++ needs to reallocate memory. These
reallocations can be simulated as a performance bug by mass
insertion of the new head vector’s elements by its member
function push back, and mass deletion of the last vector’s
element by the member function pop back.

In line with this, the following four different algorithms
were developed:

• Vector (i.e., the simulation of the performance bug),
• Raw (i.e., avoiding the performance bug version I),

• Array (i.e., avoiding the performance bug version II),
• double linked List (i.e., avoiding the performance bug

version III).
obtaining the same results in different ways, of course. The
task of each algorithm is simply to initialize the array of long
integer elements with their sequence numbers in the interval
[0, 99], and, then, iterate deleting the last element of the array
and adding the next element in the sequence of numbers to
the head of the array. Finally, the elements of the array are
ordered in descend order starting with the the first number
that is equal to the maximum number of iterations, until the
number that is for 100 elements lower than the maximum.
Thus, two representations of the array are applied, i.e., vector
class and array data structure in C++. Thus, it is expected that
algorithms using the elementary data structures (e.g., Array
and Link) would be more efficient than those using the more
abstract Vector class (e.g., Vector and Raw).

The pseudo-code of the algorithm Vector is illustrated in
Algorithm 1, from which it can be seen that this uses the vector

Algorithm 1 Algorithm Vector
vector < long int > vec ▷ vector class C++
for i=0L to 100L do

vec.push back(i) ▷ Initialization of vector
end for
for i=0L to MAX ITER do ▷ Program loop

vec.pop back() ▷ Delete the last element
vec.insert(head, i+1) ▷ Insert new as the first element

end for

class functions push back, pop back, and insert for adding the
last, removing the last and inserting the first element into/from
the vector variable vec.

Algorithm Raw is implemented according to the pseudo-
code depicted in Algorithm 2. As evident from the pseudo-

Algorithm 2 Algorithm Raw
vector < long int > vec ▷ vector class C++
for i=0L to 100L do

vec.push back(i) ▷ Initialization of vector
end for
for i=0L to MAX ITER do ▷ Program loop

for j=99 to 1 step -1 do ▷ Exchange elements
vec[j] = vec[j-1]

end for
vec[0] = i+100L

end for

code, the array of integer elements is defined as a class of
long integer, where the initialization is performed in the same
way as by the algorithm Vector (i.e., using the push back
function call). However, manipulation of the vector elements is
developed in a more elementary way: At first, the whole array
are reassigned sequentially element by element backward,
while the first element is adopted with the number proportional
to the current iteration (i.e., variable i).

298

Algorithm Array, presented in pseudo-code Algorithm 3,
applies the array C++ data structure for representation of ele-
ments of type long integer. As is evident from the pseudo-code,

Algorithm 3 Algorithm Array
long int vec[100] ▷ array C++ data structure
for i=0L to 100L do

vec[i] = i ▷ Initialization of vector
end for
for i=0L to MAX ITER do ▷ Program loop

for j=99 to 1 step -1 do
vec[j] = vec[j-1]

end for
vec[0] = i+100L

end for

the implementation is similar to the implementation of the Raw
algorithm, except in the declaration of the array variable vec.
Here, the array data structure in C++ is employed in place
of using vector class. The motivation behind implementing
the algorithm is to show, which potential overhead brings the
introduction of the more abstract class vector over the more
elementary data structure array in C++.

Finally, the algorithm List implements the double linked list
data structure in C++. The advantage of this algorithm is that
the functions of the high-level vector class are replaced with
the low-level functions implemented by its own, which are
able to optimize the algorithm’s behavior in the sense of speed
and space. The double linked list uses the data structure as
illustrated in Algorithm 4, from which it can be seen that this

Algorithm 4 Double linked List data structure
struct str list {

long int num;
str list* prev;
str list* next;

} *list; ▷ double linked list

consists of two pointers prev and next, and the long integer
variable num.

The pseudo-code of the algorithm List is presented in
Algorithm 5, from which it can be considered that the elements
are entered into the double linked list by calling the function
add new. The implementation of the function is straightfor-
ward, and demands only to allocate the new item in the heap,
initialize it, and ensure the proper forward and backward
linking. Therefore, the pseudo-code of the function is not
presented in the paper. Interestingly, the effect of element
temptation is achieved by putting the current iteration number
into the first element and tying the other 99 elements for one.
This whole task can be performed simply by modifying the
value of the pointers first and last (i.e., no reallocation is
needed).

IV. EXPERIMENTS AND RESULTS

The purpose of our experimental work was to show
what amount of carbon footprint can be expected due to

Algorithm 5 Algorithm double linked List
struct str list* first = NULL
struct str list* last = NULL
for i=99L to 1L step -1L do

first = add new(first, last, i) ▷ Initialization of vector
if i == 99 then

last = first
end if

end for
for i=0L to MAX ITER do ▷ Program loop

last− >num = i + 100L
first = last
last = last− >prev

end for

performance bugs. In line with this, the four implemented
algorithms (i.e., Vector, Raw, Array and List) 1 were compared
according to their carbon footprint, measured on three different
computer platforms, i.e.,:

• with software tools on a laptop,
• with a power-meter on a Raspberry Pi 3,
• with a power-meter on an Apple iPad.

In the remainder of the paper, the results of all three measure-
ments are discussed in detail.

A. Measuring the carbon footprint on a laptop

The effective electrical energy consumption was measured
on a laptop using battery power with powertop software utility
under the Linux operating system. The four implemented test
algorithms were running on the mentioned computer platforms
with the maximum number of iterations set to MAX ITER =
1010. All the programs were performed independently over 10
runs and the average measures were taken into consideration.

The characteristics of the laptop battery are illustrated in
Table I. Let us mention that the laptop battery was at full

TABLE I.
LAPTOP BATTERY CHARACTERISTICS.

Specification Description
Type HP ProBook 470 G3
Amp-hour capacity 3 Ah
Watt-hour capacity 44 Wh
Voltage 14.8 V
Cell type 4 cell Lithium-Ion

capacity before each start of the particular experiment.
The results of the experiments are depicted in Table II

that is divided into the following columns: the ”Init DR”
represents the average initial Discharging Rate (DR) before
and after running the algorithm, the ”Running DR” is the
DR under the strain, the ”Alg. DR” refers to the DR caused
by the running algorithm, the ”Time” measures the average
execution time of the algorithm, the ”Energy” denotes the
energy used as a product of algorithm DR by the time, and the

1https://codeberg.org/firefly-cpp/green-ict-benchmarks

299

”Carbon footprint” estimates the carbon footprint as a product
of CO2 per unit emitted by one kWh (i.e., 0.65 CO2e/kWh).
As indicated from the table, the Raw algorithm produced
the higher carbon footprint among the four algorithms. As
expected, the List algorithm was the most green in the sense
of Green ITC.

B. Measuring the carbon footprint with a power-meter on a
Raspberry Pi 3

Raspberry Pi is a series of small single-board computers
(SBCs) based on an ARM processor that represents an all in
one computer. Due to its affordability, it is suitable for using
in teaching basic computer science in schools. In our study,
the Raspberry Pi was used that was equipped with a 32-bit
ARM processor, 1 GB memory, 256 GB SSD, DVI video port,
Ethernet and Wireless LAN. The Raspbian OS was installed
on the device. The main advantage of this all in one computer
represents its power supply over a USB-C port. This means
that it is able to be monitored using the already mentioned
AVHzY CT-3 power-meter. Let us mention that the maximum
number of iterations was set to MAX ITER = 108.

An example of the measuring protocol obtained by measur-
ing the power consumption by executing the Array algorithm
by the PC is illustrated in Fig. 2. The curve in the figure
illustrates the VBUS ripple that reflects a reaction of the
Raspberry Pi in the strain caused by executing the Array
algorithm. As can be observed, the strain is demonstrated
as a step function denoting the increasing of the voltage.
Interestingly, the sudden withdrawal of voltage is a typical
consequence of some interrupts caused by the algorithm itself
(e.g., by the output of control messages), different I/O actions
(e.g., moving the mouse) or system actions. Let us mention
that no other programs were active during the experimental
work.

The results of measuring the carbon footprint are depicted
in Table III. Actually, all the experiments consisted of three
phases: (1) measuring the inactivity before the strain, (2)
measuring the strain activity, and (3) measuring the inactivity
after the strain. Typically, the duration of both inactivity phases
was approximately one minute, while the strain activity phase
denotes the effective power obtained during executing the
particular algorithm. In the table, the row ”Average inactivity”
denotes the average carbon footprint in CO2/Wh measured
during both inactivity phases, the row ”Total strain” is the
total carbon footprint measured during the strain phase, while
the row ”Algorithm strain” refers to the foot print caused by
executing the algorithm (i.e., simply the difference between
the total and the average strain). As evident from the table, the
double linked list implementation is the most environmentally
sustainable in the sense of emitting the lowest carbon footprint.
The Vector implementation of the algorithm was better than
the rest of the algorithms in the tests.

C. Measuring the carbon footprint with a power meter on an
Apple iPad

The Apple iPad prefers the foreground applications in order
to ensure users the online response. Therefore, terminations are
part of the application life-cycle, when the system terminates
the long-term running process. In the case of running the
C++ application, this termination is followed with issuing
the message ”Too much resources...” by the iOS after ap-
proximately 20 sec. Although the iPad allows running a
long-term application in the background asynchronously, our
goal was to indicate the carbon footprint of the foreground
processes running on the iPad. In line with this, the maximum
number of iterations need to be reduced significantly to
MAX ITER = 107. The specifications of the iPad were as
follow: model number MYLA2HC/A, iPad OS version 16.7,
processor 2 × Vortex, 3 GB operating memory, and 32 GB
built-in memory.

The measuring protocol obtained by the Array algorithm
strain on the iPad using the power-meter AVHzY CT-3 was
presented in Fig. 3, from which it can be concluded that
the supplement of the Array algorithm to the total power
consumption (i.e., the VBUS ripple) was not easy to observe.
Therefore, this supplement of 6.135 seconds is denoted in the
figure by arrows. When one compares the curve with those
presented in Fig. 2 obtained on the Raspberry Pi, he/she can
conclude that the iPad system is very agile when handling
a lot of active processes simultaneously. Although frequent
withdrawal of voltage can be indicated in the figure, the
running application left its carbon footprint clearly.

The measured carbon footprint is depicted in Table IV, from
which it is evident that the carbon footprint by the algorithms
in test was lower due to the lower execution time, but the
relations between the algorithms remained the same as in the
last experiment, i.e., the double linked list left the lesser carbon
footprint, while the Raw algorithm was distinguished as the
worst environment pollutant.

D. Discussion

As evident from the performed experimental work, mea-
suring the power consumption is more accurate using the
hardware device (i.e., the power-meter) than with software
tools (i.e., the powertop). Although the measurements using
powertop were taken at 1 second intervals, less than one-third
could be captured in one minute (i.e., 16/60). The reason
behind the behavior needs to be searched for in the slow
communication of the tool with the power engine. On the
other hand, the communication of the control PC with the
power-meter was very fast and accurate. The hardware device
is able to transmit up to 100 measurements in one second. This
means that even small changes of power consumption can be
sensed by the power-meter. However, the basic problem which
arose by using the AVHzY CT-3 device with the laptop was
that the power-meter device was able to support only devices
connected to the power source with the USB port. This means
that for measuring power consumption on laptops the more
professional equipment is necessary.

300

TABLE II.
CARBON FOOTPRINT OBTAINED ON THE LAPTOP BY DIFFERENT C++ ALGORITHMS.

Algorithm Init DR Running DR Alg. DR Time Energy Carbon footprint
[W] [W] [W] [sec] [Wh] [CO2e/Wh]

Vector 9.288 15.953 6.665 198.496 22.051 14.333
Raw 9.010 16.142 7.132 195.606 23.250 15.113
Array 9.532 16.221 6.689 177.381 19.776 12.854
List 7.850 15.138 7.288 16.081 1.953 1.270

Fig. 2. Measuring protocol on AVHzY CT-3 by Array algorithm strain.

TABLE III.
RESULTS OF MEASURING THE CARBON FOOTPRINT.

Carbon footprint Vector Raw Array List
Average inactivity 3.299 3.242 3.273 3.637
Total strain 12.860 63.659 27.496 8.211
Algorithm strain 9.561 60.417 24.223 4.574

TABLE IV.
APPLE IPAD

Carbon footprint Vector Raw Array List
Average inactivity 6.087 6.121 5.808 5.975
Total strain 0.855 1.289 0.637 0.824
Algorithm strain 0.123 0.516 0.317 0.075

In first sight, it seems that measuring the carbon footprint
was measured incorrectly, because the measured algorithm was
executed on an operating system that handles a lot of the other
programs simultaneously and also affected the increased power
consumption. However, the number of these processes (e.g.,
internet explorer, e-mail client, etc.) was minimized during the
measuring, while the average of both the so-called inactivity
phases (i.e., before and after executing the algorithm) were

measured explicitly. Obviously, the best solution is to put the
computer in single-user mode, but this option is unfortunately
not available to all computers (e.g., an iPad).

It turns out, that the vector in C++ is sensitive on perfor-
mance problem only, when the data class is used a lot of the
time. Interestingly, sequential usage of the array data structure
by the algorithm Array was even more efficient than using the
built-in functions by the algorithm Vector, when the enormous
actions were applied on the class. As expected, the algorithm
List, using the classical implementation of double linked list,
outperformed all the other algorithms.

V. CONCLUSION

The paper tries to achieve three goals: (1) to estimate
how the performance bugs in software influence increasing
the carbon footprint, (2) to focus primarily on the iteration
performance bugs, and (3) to find methods for measuring the
carbon footprint caused by the performance bugs properly.
In line with this, four algorithms simulating the iterative
performance bugs were considered and run on three platforms
(i.e., a laptop, a micro-computer Raspberry Pi, and an Apple
iPad). Two methods for measuring the carbon footprint were

301

Fig. 3. Measuring protocol on AVHzY CT-3 by Array algorithm strain on iPad.

examined, i.e., using the software tool powertop on Linux and
the power meter AVHzY CT-3. The experiments revealed that
the hardware measurement using the power meter was more
accurate than those using the software tools. However, both
can adequately identify the increased carbon footprint caused
by the simulation.

In summary, the study integrates two domains, i.e., software
engineering and green computing. The former can identify
the software bugs, while the latter deals with the effects of
computing on global warming. In line with this, this study
warns of harmful effects caused by performance bugs in the
sense of the increased carbon footprint.

As potential directions for the future, searching for cheaper
and more accurate solutions should be made for measuring
power consumption on computers connected to the 230 V
electricity network(e.g., AVHzY AC WiFi Watt Meter). Also,
widening the study to include all performance bugs would be
welcome.

REFERENCES

[1] Z. Liu, Z. Deng, S. J. Davis, C. Giron, and P. Ciais, “Monitoring global
carbon emissions in 2021,” Nature Reviews Earth & Environment, vol. 3,
no. 4, pp. 217–219, 2022.

[2] L. Nascimento and N. Höhne, “Expanding climate policy adoption
improves national mitigation efforts,” npj Climate Action, vol. 2, no. 1,
p. 12, 2023.

[3] C. Balboni, A. Berman, R. Burgess, and B. A. Olken, “The economics
of tropical deforestation,” Annual Review of Economics, vol. 15, pp.
723–754, 2023.

[4] A. D. Sagar, “Automobiles and global warming: Alternative fuels and
other options for carbon dioxide emissions reduction,” Environmental
Impact Assessment Review, vol. 15, no. 3, pp. 241–274, 1995.

[5] J. Koomey et al., “Growth in data center electricity use 2005 to 2010,”
A report by Analytical Press, completed at the request of The New York
Times, vol. 9, no. 2011, p. 161, 2011.

[6] P. Dhar, “The carbon impact of artificial intelligence.” Nat. Mach. Intell.,
vol. 2, no. 8, pp. 423–425, 2020.

[7] P. Somavat, V. Namboodiri et al., “Energy consumption of personal
computing including portable communication devices,” Journal of Green
Engineering, vol. 1, no. 4, pp. 447–475, 2011.

[8] J. Taina, “How green is your software?” in International Conference of
Software Business. Springer, 2010, pp. 151–162.

[9] E. Kern, M. Dick, S. Naumann, and T. Hiller, “Impacts of software and
its engineering on the carbon footprint of ict,” Environmental Impact
Assessment Review, vol. 52, pp. 53–61, 2015.

[10] Y. Chen, O. Schwahn, R. Natella, M. Bradbury, and N. Suri, “Slowcoach:
Mutating code to simulate performance bugs,” in 2022 IEEE 33rd
International Symposium on Software Reliability Engineering (ISSRE),
2022, pp. 274–285.

[11] T. N. Conservancy, “Calculate your carbon footprint,” 2023, last
accessed 25 Octobre 2023. [Online]. Available: https://www.nature.org/
en-us/get-involved/how-to-help/carbon-footprint-calculator/

[12] M. Berners-Lee, The Carbon Footprint of Everything. Greystone
Books, 2022. [Online]. Available: https://books.google.si/books?id=
CkBUEAAAQBAJ

302

